Contribution of central vs. peripheral factors to the force loss induced by passive stretch of the human plantar flexors

2013 ◽  
Vol 115 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Gabriel S. Trajano ◽  
Laurent Seitz ◽  
Kasunori Nosaka ◽  
Anthony J. Blazevich

The purpose of the present research was to identify the contribution of central vs. peripheral factors to the force loss after passive muscle stretching. Thirteen men randomly performed both a 5-min constant-torque stretch of the plantar flexors on an isokinetic dynamometer and a resting condition on 2 separate days. The triceps surae electromyogram (EMG) was recorded simultaneously with plantar flexor isometric torque. Measures of central drive, including the EMG amplitude normalized to the muscle compound action potential amplitude (EMG/M), percent voluntary activation and first volitional wave amplitude, and measures of peripheral function, including the twitch peak torque, 20-to-80-Hz tetanic torque ratio and torque during 20-Hz stimulation preceded by a doublet, were taken before and immediately and 15 min after each condition. Peak torque (−15.7%), EMG/M (−8.2%), and both twitch (−9.4%) and 20-Hz peak torques (−11.5%) were reduced immediately after stretch but recovered by 15 min. There were strong correlations between the torque loss and the reductions in central drive parameters ( r = 0.65–0.93). Torque recovery was also strongly correlated with the recovery in EMG/M and percent voluntary activation ( r = 0.77–0.81). The moderate decreases in measures of peripheral function were not related to the torque loss or recovery. These results suggest that 1) central factors were strongly related to the torque reduction immediately after stretch and during torque recovery; and 2) the muscle's contractile capacity was moderately reduced, although these changes were not associated with the torque reduction, and changes in excitation-contraction coupling efficiency were not observed.

2014 ◽  
Vol 117 (12) ◽  
pp. 1486-1492 ◽  
Author(s):  
Gabriel S. Trajano ◽  
Laurent B. Seitz ◽  
Kazunori Nosaka ◽  
Anthony J. Blazevich

The purpose of the present study was to examine the possible inhibitory effect of passive plantar flexor muscle stretching on the motoneuron facilitatory system. Achilles tendon vibration (70 Hz) and triceps surae electrical stimulation (20 Hz) were imposed simultaneously in 11 subjects to elicit contraction through reflexive pathways in two experiments. In experiment 1, a vibration-stimulation protocol was implemented with the ankle joint plantar flexed (+10°), neutral (0°), and dorsiflexed (−10°). In experiment 2, the vibration-stimulation protocol was performed twice before (control), then immediately, 5, 10, and 15 min after a 5-min intermittent muscle stretch protocol. Plantar flexor torque and medial and lateral gastrocnemius and soleus (EMGSol) EMG amplitudes measured during and after (i.e., self-sustained motor unit firing) the vibration protocol were used as an indicator of this facilitatory pathway. In experiment 1, vibration torque, self-sustained torque and EMGSol were higher with the ankle at −10° compared with 0° and +10°, suggesting that this method is valid to assess motoneuronal facilitation. In experiment 2, torque during vibration was reduced by ∼60% immediately after stretch and remained depressed by ∼35% at 5 min after stretch ( P < 0.05). Self-sustained torque was also reduced by ∼65% immediately after stretch ( P < 0.05) but recovered by 5 min. Similarly, medial gastrocnemius EMG during vibration was reduced by ∼40% immediately after stretch ( P < 0.05), and EMGSol during the self-sustained torque period was reduced by 44% immediately after stretch ( P < 0.05). In conclusion, passive stretch negatively affected the motoneuronal amplification for at least 5 min, suggesting that motoneuron disfacilitation is a possible mechanism influencing the stretch-induced torque loss.


Author(s):  
Kensuke Oba ◽  
Mina Samukawa ◽  
Yosuke Abe ◽  
Yukino Suzuki ◽  
Miho Komatsuzaki ◽  
...  

The different effects of intermittent and continuous stretching on the mechanical properties of the musculotendinous complex have been unclear. This study aimed to compare the effects of intermittent and continuous stretching for the same duration on the range of motion (ROM), passive resistive torque (PRT), and musculotendinous stiffness (MTS) of ankle plantar flexors. Eighteen healthy young men participated in the study. Intermittent (four sets × 30 s) and continuous stretching (one set × 120 s) were performed in random orders on two separate days. Both stretching protocols were conducted using a dynamometer with a constant torque applied. ROM and PRT were determined using a dynamometer, and MTS was calculated using the torque–angle relationship measured before and after stretching. Two-way repeated measures analysis of variance was performed for all parameters. Both intermittent and continuous stretching significantly increased ROM and decreased PRT and MTS (p < 0.05). Intermittent stretching led to greater changes in ROM and PRT than continuous stretching. However, the reduction in MTS did not differ between the two conditions. These results suggest that intermittent stretching is more effective in increasing ROM and changing the mechanical properties of the musculotendinous complex.


2018 ◽  
Vol 43 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Carey L. Simpson ◽  
Rowan R. Smart ◽  
Dylan E.E. Melady ◽  
Jennifer M. Jakobi

Contraction velocity of a muscle tendon unit (MTU) is dependent upon the interrelationship between fascicles shortening and the tendon lengthening. Altering the mechanical properties of these tissues through a perturbation such as static stretching slows force generation. Females, who have inherently greater compliance compared with males, have slower velocity of MTU components. The addition of a static stretch might further exacerbate this sex difference. The purpose of this study was to investigate the velocity of fascicle shortening and tendon lengthening in males and females during isometric maximal voluntary contraction (MVC) of the plantar flexors prior to and following an acute static stretch. The MTU was imaged with ultrasound and voluntary activation tested with twitch interpolation for the 5-s plantar flexion MVC, which proceeded and followed an acute stretch. For the 3-min stretch the ankle was passively rotated to maximal dorsi-flexion. The males were stronger (128.71 ± 7.88 Nm) than the females (89.92 ± 4.70 Nm) but voluntary activation did not differ. Tendon lengthening velocity (p = 0.001) and fascicle shortening velocity (p = 0.01) were faster in males than females. Tendon velocity was positively and significantly correlated with fascicle velocity, (r2 = 0.307, p = 0.02). Although sex was significant as a predictor (p = 0.05) time was not independently significant. Thus, stretch did not alter this relationship in either sex (p = 0.6). The velocity of the individual components of the MTU is slower in females when compared with males; however, acute stretch does not alter the relationship between these components in males or females.


2018 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Kensuke Oba ◽  
Mina Samukawa ◽  
Kentaro Nakamura ◽  
Kentaro Mikami ◽  
Yuki Suzumori ◽  
...  

Author(s):  
Nick Hofmann ◽  
Michael P. Hennessey

Due to recent technological developments in advanced materials, the integration of shape memory alloys (SMAs) into new machines and mechanisms is becoming more common and it offers tremendous potential for the future. Using currently available properties of common SMA materials, the paper’s contribution is to: Study through dynamic simulation the potential offered by SMA springs to serve as the basis for rotary actuation. In the process, the SMA displaces a rocker arm rotating about an axis to induce rotational motion of a driveshaft, in effect converting a force into rotational motion. When embedded in a cycle with heating & cooling phases and a resetting mechanism, unidirectional rotational motion can be achieved. Regarding heating and cooling cycles, forced air convection is used to reduce thermal cycle cooling and is calculated via transient thermal analyses. Using typical parameter values for the representative design considered, through forced air convection, cooling cycles are reduced from approximately 30 seconds (natural) to 5.5 seconds (forced) and as a result, a complete system cycle can occur in 10 seconds, with the applied inertial load of 2.0 kg-m2. Using MATLAB and Simulink, a nonlinear 3rd order dynamic system model was created and simulations were performed. One complicating factor concerned angular limits and the necessary thermal cycling, which was solved through appropriate sequencing and resetting of integrators for different phases. Simulation results for the design considered show that a peak torque of 1.72 N-m is possible and that relatively smooth motion and approximately constant torque output is also possible through the addition of a few more rocker arm systems, properly commutated. Lastly, the design analysis framework and results may inspire future realization of actual devices.


2019 ◽  
Vol 33 (4) ◽  
pp. 245-259 ◽  
Author(s):  
Maud Pradines ◽  
Mouna Ghedira ◽  
Raphaël Portero ◽  
Ingrid Masson ◽  
Christina Marciniak ◽  
...  

Introduction. The effects of long-term stretching (>6 months) in hemiparesis are unknown. This prospective, randomized, single-blind controlled trial compared changes in architectural and clinical parameters in plantar flexors of individuals with chronic hemiparesis following a 1-year guided self-stretch program, compared with conventional rehabilitation alone. Methods. Adults with chronic stroke-induced hemiparesis (time since lesion >1 year) were randomized into 1 of 2, 1-year rehabilitation programs: conventional therapy (CONV) supplemented with the Guided Self-rehabilitation Contract (GSC) program, or CONV alone. In the GSC group, specific lower limb muscles, including plantar flexors, were identified for a diary-based treatment utilizing daily, high-load, home self-stretching. Blinded assessments included (1) ultrasonographic measurements of soleus and medial gastrocnemius (MG) fascicle length and thickness, with change in soleus fascicle length as primary outcome; (2) maximum passive muscle extensibility (XV1, Tardieu Scale); (3) 10-m maximal barefoot ambulation speed. Results. In all, 23 individuals (10 women; mean age [SD], 56 [±12] years; time since lesion, 9 [±8] years) were randomized into either the CONV (n = 11) or GSC (n = 12) group. After 1 year, all significant between-group differences favored the GSC group: soleus fascicle length, +18.1mm [9.3; 29.9]; MG fascicle length, +6.3mm [3.5; 9.1]; soleus thickness, +4.8mm [3.0; 7.7]; XV1 soleus, +4.1° [3.1; 7.2]; XV1 gastrocnemius, +7.0° [2.1; 11.9]; and ambulation speed, +0.07m/s [+0.02; +0.16]. Conclusions. In chronic hemiparesis, daily self-stretch of the soleus and gastrocnemius over 1 year using GSC combined with conventional rehabilitation increased muscle fascicle length, extensibility, and ambulation speed more than conventional rehabilitation alone.


2020 ◽  
Vol 120 (12) ◽  
pp. 2715-2727
Author(s):  
Nikolaos Pentidis ◽  
Falk Mersmann ◽  
Sebastian Bohm ◽  
Erasmia Giannakou ◽  
Nickos Aggelousis ◽  
...  

Abstract Purpose Evidence on training-induced muscle hypertrophy during preadolescence is limited and inconsistent. Possible associations of muscle strength and tendon stiffness with jumping performance are also not investigated. We investigated the thickness and pennation angle of the gastrocnemius medialis muscle (GM), as indicators for potential muscle hypertrophy in preadolescent athletes. Further, we examined the association of triceps surae muscle–tendon properties with jumping performance. Methods Eleven untrained children (9 years) and 21 similar-aged artistic gymnastic athletes participated in the study. Muscle thickness and pennation angle of the GM were measured at rest and muscle strength of the plantar flexors and Achilles tendon stiffness during maximum isometric contractions. Jumping height in squat (SJ) and countermovement jumps (CMJ) was examined using a force plate. We evaluated the influence of normalised muscle strength and tendon stiffness on jumping performance with a linear regression model. Results Muscle thickness and pennation angle did not differ significantly between athletes and non-athletes. In athletes, muscle strength was greater by 25% and jumping heights by 36% (SJ) and 43% (CMJ), but Achilles tendon stiffness did not differ between the two groups. The significant predictor for both jump heights was tendon stiffness in athletes and normalised muscle strength for the CMJ height in non-athletes. Conclusion Long-term artistic gymnastics training during preadolescence seems to be associated with increased muscle strength and jumping performance but not with training-induced muscle hypertrophy or altered tendon stiffness in the plantar flexors. Athletes benefit more from tendon stiffness and non-athletes more from muscle strength for increased jumping performance.


2012 ◽  
Vol 302 (8) ◽  
pp. R903-R916 ◽  
Author(s):  
Samuel Verges ◽  
Thomas Rupp ◽  
Marc Jubeau ◽  
Bernard Wuyam ◽  
François Esteve ◽  
...  

Reduction of aerobic exercise performance observed under hypoxic conditions is mainly attributed to altered muscle metabolism due to impaired O2 delivery. It has been recently proposed that hypoxia-induced cerebral perturbations may also contribute to exercise performance limitation. A significant reduction in cerebral oxygenation during whole body exercise has been reported in hypoxia compared with normoxia, while changes in cerebral perfusion may depend on the brain region, the level of arterial oxygenation and hyperventilation induced alterations in arterial CO2. With the use of transcranial magnetic stimulation, inconsistent changes in cortical excitability have been reported in hypoxia, whereas a greater impairment in maximal voluntary activation following a fatiguing exercise has been suggested when arterial O2 content is reduced. Electromyographic recordings during exercise showed an accelerated rise in central motor drive in hypoxia, probably to compensate for greater muscle contractile fatigue. This accelerated development of muscle fatigue in moderate hypoxia may be responsible for increased inhibitory afferent signals to the central nervous system leading to impaired central drive. In severe hypoxia (arterial O2 saturation <70–75%), cerebral hypoxia per se may become an important contributor to impaired performance and reduced motor drive during prolonged exercise. This review examines the effects of acute and chronic reduction in arterial O2 (and CO2) on cerebral blood flow and cerebral oxygenation, neuronal function, and central drive to the muscles. Direct and indirect influences of arterial deoxygenation on central command are separated. Methodological concerns as well as future research avenues are also considered.


2014 ◽  
Vol 17 (01) ◽  
pp. 1450001 ◽  
Author(s):  
Al-Sayed A. Shanb ◽  
Enas F. Youssef

The purpose of this study was to evaluate the effects of adding biofeedback training to active exercise training on quadriceps torque, voluntary activation and functional activity after total knee arthroplasty (TKA). A total of 45 patients with unilateral TKA participated in this study; their ages ranged from 58 to 67 years. They were assigned randomly to two groups. Group I comprised 21 patients who practiced an active exercise training program for 30 to 45 min/session, two sessions/week, for 4 months. Group II contained 24 patients who practiced biofeedback training in addition to the active exercise training program for 30 to 45 min/session, two sessions/week, for 4 months. Isometric peak torque of the quadriceps, voluntary activation and knee functional activity were measured. The results revealed significant improvements in quadriceps torque, voluntary activation and knee functional activity for both groups, with more improvement in knee functional activities in group II. There were nonsignificant differences between the two groups in both quadriceps peak torque and voluntary activation after training (p > 0.05). Conclusion: An active exercise program can enhance quadriceps peak torque, voluntary activation and knee functional activity after unilateral TKA. The addition of biofeedback training increases the benefits for the knee functional activity of a patient.


Sign in / Sign up

Export Citation Format

Share Document