scholarly journals Increased prefrontal oxygenation prior to and at the onset of over-ground locomotion in humans

2020 ◽  
Vol 129 (5) ◽  
pp. 1161-1172
Author(s):  
Kanji Matsukawa ◽  
Ryota Asahara ◽  
Kei Ishii ◽  
Mayo Kunishi ◽  
Yurino Yamashita ◽  
...  

We found using wireless near-infrared spectroscopy that prefrontal oxygenation increased before the onset of arbitrary over-ground walking, whereas the preexercise increase was absent when walking was suddenly started by cue. The difference in prefrontal oxygenation between start modes (considered related to central command) preceded heart rate response variances and demonstrated a positive relationship with the difference in heart rate. The central command-related prefrontal activity may contribute to cardiac adjustment, synchronized with the beginning of over-ground walking.

2021 ◽  
Author(s):  
Yoko Hasegawa ◽  
Ayumi Sakuramoto ◽  
Joe Sakagami ◽  
Masako Shiramizu ◽  
Tatsuya Suzuki ◽  
...  

Abstract Evidence indicates that distinct brain regions are associated with various emotional states. Cortical activity may be modulated by emotional states that are triggered upon chewing with various flavors. We examined cortical activity during chewing with different tastes/odors using multi-channel near-infrared spectroscopy (NIRS). Thirty-six right-handed subjects participated in a crossover-design trial. Subjects chewed flavorful (palatable) or less flavorful (unpalatable) gum for 5 minutes. During gum-chewing these subjects experienced positive and negative emotions, respectively. Subjects rated the taste/odor/deliciousness of each gum with a visual analog scale. Bilateral hemodynamic responses in the frontal to parietal lobes, bilateral masseter muscle activation, and heart rate were measured during gum-chewing. Data changes during gum-chewing were evaluated. Subjects’ ratings of the tastes and odors of each gum differed (p<0.001). Hemodynamic response changes were significantly elevated in the bilateral primary sensorimotor cortex during gum-chewing, in comparison to resting. The hemodynamic responses of wide brain regions showed little difference between the gum conditions; however, a difference was detected in the corresponding left frontopolar/dorsolateral prefrontal cortex. Muscle activation and heart rate were not significantly different between the gum conditions. Differential processing in the left prefrontal cortex might be responsible for emotional states caused by palatable and unpalatable foods.


2014 ◽  
Vol 19 (6) ◽  
pp. 067010 ◽  
Author(s):  
Katherine L. Perdue ◽  
Alissa Westerlund ◽  
Sarah A. McCormick ◽  
Charles A. Nelson

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiang-Yun Ma ◽  
Yong-Jun Wang ◽  
Bo Xu ◽  
Kun Feng ◽  
Gao-Xiang Sun ◽  
...  

Background/Objective. Menopausal depression (MD) is characterized by depressive symptoms along with hormonal fluctuations. We investigate brain function alteration between major depressive disorder (MDD) and MD.Methods. The difference in oxygenated hemoglobin (Oxy-Hb) for the prefrontal cortex (PFC) was compared retrospectively among 90 females presented with 30 MDD, 30 MD, and 30 healthy controls (HCs) using verbal fluency task (VFT) with near-infrared spectroscopy (NIRS).Results. We observed a significant difference in Oxy-Hb alteration in the left dorsolateral PFC (DLPFC) using VFT with NIRS (channel 18,P=0.007) between the MD and MDD groups. A significant difference in Oxy-Hb levels was observed among the three groups in the bilateral DLPFC (channels 18, 27, 33, 39, 41, and 45;P<0.05). Compared to the HCs, the MD group presented lower Oxy-Hb activation in the right DLPFC (channel 41;P=0.048) and the left DLPFC (channels 18, 39, and 45;P<0.05), and the MDD group presented lower Oxy-Hb activation in the right DLPFC (channels 27, 33, and 41;P<0.05) and the left DLPFC (channels 39 and 45;P<0.05).Conclusion. Abnormal hemodynamics of the left DLPFC can differentiate MD from MDD by NIRS.


2017 ◽  
Vol 12 (4) ◽  
pp. 440-447 ◽  
Author(s):  
Dennis-Peter Born ◽  
Thomas Stöggl ◽  
Mikael Swarén ◽  
Glenn Björklund

Purpose:To investigate the cardiorespiratory and metabolic response of trail running and evaluate whether heart rate (HR) adequately reflects the exercise intensity or if the tissue-saturation index (TSI) could provide a more accurate measure during running in hilly terrain.Methods:Seventeen competitive runners (4 women, V̇O2max, 55 ± 6 mL · kg–1 · min–1; 13 men, V̇O2max, 68 ± 6 mL · kg–1 · min–1) performed a time trial on an off-road trail course. The course was made up of 2 laps covering a total distance of 7 km and included 6 steep uphill and downhill sections with an elevation gain of 486 m. All runners were equipped with a portable breath-by-breath gas analyzer, HR belt, global positioning system receiver, and near-infrared spectroscopy (NIRS) device to measure the TSI.Results:During the trail run, the exercise intensity in the uphill and downhill sections was 94% ± 2% and 91% ± 3% of maximal heart rate, respectively, and 84% ± 8% and 68% ± 7% of V̇O2max, respectively. The oxygen uptake (V̇O2) increased in the uphill sections and decreased in the downhill sections (P < .01). Although HR was unaffected by the altering slope conditions, the TSI was inversely correlated to the changes in V̇O2 (r = –.70, P < .05).Conclusions:HR was unaffected by the continuously changing exercise intensity; however, TSI reflected the alternations in V̇O2. Recently used exclusively for scientific purposes, this NIRS-based variable may offer a more accurate alternative than HR to monitor running intensity in the future, especially for training and competition in hilly terrain.


2013 ◽  
Vol 17 (5) ◽  
pp. 506-515 ◽  
Author(s):  
Michel S. Reis ◽  
Danilo C. Berton ◽  
Ross Arena ◽  
Aparecida M. Catai ◽  
Jose A. Neder ◽  
...  

2021 ◽  
Vol 13 (18) ◽  
pp. 3553
Author(s):  
Eva-Maria Bønnelycke ◽  
Gordon Hastie ◽  
Kimberley Bennett ◽  
Jana Kainerstorfer ◽  
Ryan Milne ◽  
...  

Chemical immobilisation of pinnipeds is a routine procedure in research and veterinary practice. Yet, there are inevitable risks associated with chemical immobilisation, and the physiological response to anaesthetic agents in pinnipeds remains poorly understood. The current study used wearable continuous-wave near-infrared spectroscopy (NIRS) data from 10 trials of prolonged anaesthesia (0.5 to 1.4 h) induced through ketamine and midazolam in five grey seals (Halichoerus grypus) involved in other procedures. The aim of this study was to (1) analyse the effect of each compound on heart rate, arterial oxygen saturation (SpO2), and relative concentration changes in oxygenated [ΔO2Hb] and deoxygenated haemoglobin [ΔHHb] in cerebral tissue and (2) to investigate the use of NIRS as a real-time physiological monitoring tool during chemical immobilisation. Average group responses of ketamine (n = 27) and midazolam (n = 11) administrations were modelled using generalised additive mixed models (GAMM) for each dependent variable. Following ketamine and midazolam administration, [ΔHHb] increased and [ΔO2Hb] remained relatively stable, which was indicative of apnoea. Periods of apnoea were confirmed from respiratory band data, which were simultaneously collected during drugging trials. Given that SpO2 remained at 97% during apnoea, we hypothesized that increasing cerebral [ΔHHb] was a result of venous congestion as opposed to decreased oxygen delivery. Changes in heart rate were limited and appeared to be driven by the individual pharmacological actions of each drug. Future research could include simultaneous measures of metabolic rate, such as the relative change in concentration of cytochrome-c-oxidase, to guide operators in determining when apnoea should be considered prolonged if changes in [ΔHHb] and [ΔO2Hb] occur beyond the limits recorded in this study. Our findings support the use of NIRS as real-time physiological monitoring tool during pinniped chemical immobilisation, which could assist veterinarians and researchers in performing safe anaesthetic procedures.


Author(s):  
José-Antonio Salas-Montoro ◽  
Manuel Mateo March ◽  
Cristóbal Sánchez-Muñoz ◽  
Mikel Zabala

The use of near-infrared spectroscopy could be an interesting alternative to other invasive or expensive methods to estimate the second lactate threshold. Our objective was to compare the intensities of the muscle oxygen saturation breakpoint obtained with the Humon Hex and the second lactate threshold in elite cyclists. Ninety cyclists performed a maximal graded exercise test. Blood capillary lactate was obtained at the end of steps and muscle oxygenation was continuously monitored. There were no differences (p>0.05) between muscle oxygen oxygenation breakpoint and second lactate threshold neither in power nor in heart rate, nor when these values were relativized as a percentage of maximal aerobic power or maximum heart rate. There were also no differences when men and women were studied separately. Both methods showed a highly correlation in power (r=0.914), percentage of maximal aerobic power (r=0.752), heart rate (r=0.955), and percentage of maximum heart rate (r=0.903). Bland-Altman resulted in a mean difference of 0.05±0.27 W·kg–1, 0.91±4.93%, 0.63±3.25 bpm, and 0.32±1.69% for power, percentage of maximal aerobic power, heart rate and percentage of maximum heart rate respectively. These findings suggest that Humon may be a non-invasive and low-cost alternative to estimate the second lactate threshold intensity in elite cyclists.


Sign in / Sign up

Export Citation Format

Share Document