On the Implication of Dietary Nitrate Supplementation for the Hemodynamic and Fatigue Response to Cycling Exercise

Author(s):  
Taylor S. Thurston ◽  
Joshua C. Weavil ◽  
Thomas J. Hureau ◽  
Jayson R. Gifford ◽  
Vincent P. Georgescu ◽  
...  

This study investigated the impact of dietary nitrate supplementation on peripheral hemodynamics, the development of neuromuscular fatigue, and time to task failure during cycling exercise. Eleven recreationally active male participants (27±5 years, VO2max: 42±2ml/kg/min) performed two experimental trials following 3 days of either dietary nitrate-rich beetroot juice (4.1mmol NO3-/day; DNS) or placebo (PLA) supplementation in a blinded, counterbalanced order. Exercise consisted of constant-load cycling at 50, 75, and 100 W (4-min each) and, at ~80% of peak power output (218±12W), to task-failure. All participants returned to repeat the shorter of the two trials performed to task-failure, but with the opposite supplementation regime (ISO-time comparison). Mean arterial pressure (MAP), leg blood flow (QL; Doppler ultrasound), leg vascular conductance (LVC), and pulmonary gas exchange were continuously assessed during exercise. Locomotor muscle fatigue was determined by the change in pre- to post-exercise quadriceps twitch-torque (∆Qtw) and voluntary activation (∆VA; electrical femoral nerve stimulation). Following DNS, plasma [nitrate] (~670 vs ~180 nmol) and [nitrite] (~775 vs ~11 nmol) were significantly elevated compared to PLA. Unlike PLA, DNS lowered both QL and MAP by ~8% (P<0.05), but did not alter LVC (P=0.31). VO2 across work rates, as well as cycling time to task-failure (~7min) and locomotor muscle fatigue following the ISO-time comparison were not different between the two conditions (∆Qtw ~42%, ∆VA ~4%). Thus, despite significant hemodynamic changes, DNS did not alter the development of locomotor muscle fatigue and, ultimately, cycling time to task failure.

2018 ◽  
Vol 315 (4) ◽  
pp. R741-R750 ◽  
Author(s):  
Joshua C. Weavil ◽  
Thomas J. Hureau ◽  
Taylor S. Thurston ◽  
Simranjit K. Sidhu ◽  
Ryan S. Garten ◽  
...  

To examine the impact of aging on neuromuscular fatigue following cycling (CYC; large active muscle mass) and single-leg knee-extension (KE; small active muscle mass) exercise, 8 young (25 ± 4 years) and older (72 ± 6 years) participants performed CYC and KE to task failure at a given relative intensity (80% of peak power output). The young also matched CYC and KE workload and duration of the old (iso-work comparison). Peripheral and central fatigue were quantified via pre-/postexercise decreases in quadriceps twitch torque (∆Qtw, electrical femoral nerve stimulation) and voluntary activation (∆VA). Although young performed 77% and 33% more work during CYC and KE, respectively, time to task failure in both modalities was similar to the old (~9.5 min; P > 0.2). The resulting ΔQtw was also similar between groups (CYC ~40%, KE ~55%; P > 0.3); however, ∆VA was, in both modalities, approximately double in the young (CYC ~6%, KE ~9%; P < 0.05). While causing substantial peripheral and central fatigue in both exercise modalities in the old, ∆Qtw in the iso-work comparison was not significant (CYC; P = 0.2), or ~50% lower (KE; P < 0.05) in the young, with no central fatigue in either modality ( P > 0.4). Based on iso-work comparisons, healthy aging impairs fatigue resistance during aerobic exercise. Furthermore, comparisons of fatigue following exercise at a given relative intensity mask the age-related difference observed following exercise performed at the same workload. Finally, although active muscle mass has little influence on the age-related difference in the rate of fatigue at a given relative intensity, it substantially impacts the comparison during exercise at a given absolute intensity.


Author(s):  
Thomas J. Hureau ◽  
Joshua C. Weavil ◽  
Simranjit K. Sidhu ◽  
Taylor S. Thurston ◽  
Van R. Reese ◽  
...  

We examined the effect of intravenous ascorbate administration (VitC) on exercise-induced redox balance, inflammation, exertional dyspnea, neuromuscular fatigue, and exercise tolerance in patients with chronic obstructive pulmonary disease (COPD). Eight COPD patients completed constant-load cycling (~80% of peak power output, 83±10W) to task-failure following intravenous VitC (2g) or saline (placebo, PL) infusion. All participants repeated the shorter of the two exercise trials (isotime), with the other infusate. Quadriceps fatigue was determined by pre- to post-exercise changes in quadriceps twitch-torque (∆Qtw, electrical femoral nerve stimulation). Corticospinal excitability before, during, and after exercise was assessed by changes in motor-evoked potentials triggered by transcranial magnetic stimulation. VitC increased superoxide dismutase (marker for endogenous antioxidant capacity) by 129% and mitigated C-reactive protein (marker for inflammation) in the plasma during exercise, but failed to alter the exercise-induced increase in lipid peroxidation (malondialdehyde) and free radicals (EPR-spectroscopy). While VitC did, indeed, decrease neuromuscular fatigue (∆Qtw PL: -29±5%, VitC: -23±6%, P<0.05), there was no impact on corticospinal excitability and time to task-failure (~8min, P=0.8). Interestingly, in terms of pulmonary limitations to exercise, VitC had no effect on perceived exertional dyspnea (~8.5/10) and its determinants, including SpO2 (~92%) and respiratory muscle work (~650cmH2OŸsŸmin-1) (P>0.3). Thus, although VitC facilitated indicators for antioxidant capacity, diminished inflammatory markers, and improved neuromuscular fatigue resistance, it failed to improve exertional dyspnea and cycling exercise tolerance in patients with COPD. As dyspnea is recognized to limit exercise tolerance in COPD, the otherwise beneficial effects of VitC may have been impacted by this unaltered sensation.


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Colin Carriker ◽  
Phillip Armentrout ◽  
Sarah Levine ◽  
James Smoliga

Introduction: Previous studies have examined dietary nitrate supplementation and its effects on dry static apnea, and peak power. Dietary nitrate supplementation has been found to increase maximal apnea and peak power output. The purpose of this study was to determine the effects of beetroot juice on dry static apnea and Wingate performance. Hypothesis: Dietary nitrate will improve maximal breath hold time and peak power output. Dietary nitrate will improve tolerance to CO2, thereby improving maximal breath hold time and anaerobic capacity. Methods: In a randomized, double-blind, counterbalanced study, five healthy males (20.4±0.89 years) visited the lab on 3 separate occasions each separated by one week. Visit 1 served as a Wingate and breath hold familiarization visit. Prior to visits 2 and 3 participants were instructed to drink a beverage either a placebo (negligible nitrate content, PL) or dietary nitrate rich beverage (12.4 mmol nitrate, NIT) during the 4 days leading up to their next visit. Visits 2 and 3 consisted of two submaximal breath holds (80% of maximal determined during visit 1), with 2 minutes of rest between and three minutes of rest preceding the final breath hold for maximal duration. Finally, participants completed a standardized 10-minute warmup on the cycle ergometer before completing a 30-second maximal effort Wingate test. Results: A linear mixed effects model was used to determine whether treatment (NIT vs. PL) was associated with differences in VCO2 or PetCO2. Time (0, 10, 20, 30 min post-breath hold) and Treatment both served as repeated measures. Models were developed using multiple repeated measures covariance matrix structures, and the model with the lowest AIC was chosen as the final model. The interaction between time and treatment was included in the original models, and was removed if it was not statistically significant. Time was a statistically significant factor for VCO2 and PetCO2 (p < 0.001). Treatment, and the Time x Treatment interaction was not significant for either variable. No differences between NIT and PL were observed during the Wingate test for either time to peak power (5.02±2.45 and 6.2±2.43 sec, respectively) or maximal power (9.73±1.01 and 9.72±1.03 watts/kg, respectively) and fatigue index (49.42±14.98 and 47.30±6.99 watts/sec, respectively). Conclusion: Preliminary data indicates that in a general population four days of dietary nitrate supplementation may not improve breath hold time, tolerance to carbon dioxide in the lungs, or Wingate performance.


2016 ◽  
Vol 11 (3) ◽  
pp. 337-343 ◽  
Author(s):  
Inge K. Stoter ◽  
Brian R. MacIntosh ◽  
Jared R. Fletcher ◽  
Spencer Pootz ◽  
Inge Zijdewind ◽  
...  

Purpose:To evaluate pacing behavior and peripheral and central contributions to muscle fatigue in 1500-m speed-skating and cycling time trials when a faster or slower start is instructed.Methods:Nine speed skaters and 9 cyclists, all competing at regional or national level, performed two 1500-m time trials in their sport. Athletes were instructed to start faster than usual in 1 trial and slower in the other. Mean velocity was measured per 100 m. Blood lactate concentrations were measured. Maximal voluntary contraction (MVC), voluntary activation (VA), and potentiated twitch (PT) of the quadriceps muscles were measured to estimate central and peripheral contributions to muscle fatigue. In speed skating, knee, hip, and trunk angles were measured to evaluate technique.Results:Cyclists showed a more explosive start than speed skaters in the fast-start time trial (cyclists performed first 300 m in 24.70 ± 1.73 s, speed skaters in 26.18 ± 0.79 s). Both trials resulted in reduced MVC (12.0% ± 14.5%), VA (2.4% ± 5.0%), and PT (25.4% ± 15.2%). Blood lactate concentrations after the time trial and the decrease in PT were greater in the fast-start than in the slow-start trial. Speed skaters showed higher trunk angles in the fast-start than in the slow-start trial, while knee angles remained similar.Conclusions:Despite similar instructions, behavioral adaptations in pacing differed between the 2 sports, resulting in equal central and peripheral contributions to muscle fatigue in both sports. This provides evidence for the importance of neurophysiological aspects in the regulation of pacing. It also stresses the notion that optimal pacing needs to be studied sport specifically, and coaches should be aware of this.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
James Vanhie ◽  
Eric Hedge ◽  
Jacob Fanous ◽  
Jamie Blackwell ◽  
Daniel Keir ◽  
...  

Author(s):  
Jenny Zhang ◽  
Danilo Iannetta ◽  
Mohammed Alzeeby ◽  
Martin J. MacInnis ◽  
Saied Jalal Aboodarda

Neuromuscular (NM), cardiorespiratory, and perceptual responses to maximal graded exercise using different amounts of active muscle mass remain unclear. We hypothesized that during dynamic exercise, peripheral NM fatigue (declined twitch force) and muscle pain would be greater using smaller muscle mass, whereas central fatigue (declined voluntary activation) and ventilatory variables would be greater using larger muscle mass. Twelve males (29.8±4.7 years) performed two cycling ramp incremental tests until task failure: (i) single-leg (SL) with 10 W·min-1ramp, and (ii) double-leg (DL) with 20 W·min-1ramp. NM fatigue was assessed at baseline, task failure (post), then after 1, 4, and 8 min of recovery. Cardiorespiratory and perceptual variables (i.e., ratings of perceived exertion (RPE), fatigue, pain, dyspnea) were measured throughout cycling. Exercise duration was similar between sessions (SL: 857.7±263.6; DL: 855.0±218.8 s; p=0.923) and higher absolute peak power output was attained in DL (SL: 163.2±43.8; DL: 307.0±72.0 W; p<0.001). While central fatigue did not differ between conditions (SL: -6.6±6.5%; DL: -3.5±4.8%; p=0.091), maximal voluntary contraction (SL: -41.6±10.9%; DL: -33.7±8.5%; p=0.032) and single twitch forces (SL: -59.4±18.8%; DL: -46.2±16.2%; p=0.003) declined more following SL. DL elicited higher peak oxygen uptake (SL: 42.1±10.0; DL:50.3±9.3 mL·kg-1·min-1; p<0.001), ventilation (SL: 137.1±38.1; DL: 171.5±33.2 L·min-1; p<0.001), and heart rate (SL: 167±21; DL: 187±8 bpm; p=0.005). Dyspnea (p=0.025) was higher in DL; however, RPE (p=0.005) and pain (p<0.001) were higher in SL. These results suggest that interplay between NM, cardiorespiratory, and perceptual determinants of exercise performance during incremental cycling to task failure are muscle mass-dependent.


2011 ◽  
Vol 43 (6) ◽  
pp. 1125-1131 ◽  
Author(s):  
KATHERINE E. LANSLEY ◽  
PAUL G. WINYARD ◽  
STEPHEN J. BAILEY ◽  
ANNI VANHATALO ◽  
DARYL P. WILKERSON ◽  
...  

2013 ◽  
Vol 114 (10) ◽  
pp. 1426-1434 ◽  
Author(s):  
Daria Neyroud ◽  
Jennifer Rüttimann ◽  
Anne F. Mannion ◽  
Guillaume Y. Millet ◽  
Nicola A. Maffiuletti ◽  
...  

The extent and characteristics of muscle fatigue of different muscle groups when subjected to a similar fatiguing task may differ. Thirteen healthy young men performed sustained contractions at 50% maximal voluntary contraction (MVC) force until task failure, with four different muscle groups, over two sessions. Per session, one upper limb and one lower limb muscle group were tested (knee extensors and thumb adductor, or plantar and elbow flexors). Changes in voluntary activation level and contractile properties were derived from doublet responses evoked during and after MVCs before and after exercise. Time to task failure differed ( P < 0.05) between muscle groups (220 ± 64 s for plantar flexors, 114 ± 27 s for thumb adductor, 77 ± 25 s for knee extensors, and 72 ± 14 s for elbow flexors). MVC force loss immediately after voluntary task failure was similar (−30 ± 11% for plantar flexors, −37 ± 13% for thumb adductor, −34 ± 15% for knee extensors, and −40 ± 12% for elbow flexors, P > 0.05). Voluntary activation was decreased for plantar flexors only (from 95 ± 5% to 82 ± 9%, P < 0.05). Potentiated evoked doublet amplitude was more depressed for upper limb muscles (−59.3 ± 14.7% for elbow flexors and −60.1 ± 24.1% for thumb adductor, P < 0.05) than for knee extensors (−28 ± 15%, P < 0.05); no reduction was found in plantar flexors (−7 ± 12%, P > 0.05). In conclusion, despite different times to task failure when sustaining an isometric contraction at 50% MVC force for as long as possible, diverse muscle groups present similar loss of MVC force after task failure. Thus the extent of muscle fatigue is not affected by time to task failure, whereas this latter determines the etiology of fatigue.


Author(s):  
Jean M. Nyakayiru ◽  
Kristin L. Jonvik ◽  
Philippe J.M. Pinckaers ◽  
Joan Senden ◽  
Luc J.C. van Loon ◽  
...  

While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O2) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O2peak 65 ± 4 ml·kg-1·min-1, Wmax 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% Wmax and 30 min at 65% Wmax on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].


2012 ◽  
Vol 108 (5) ◽  
pp. 1270-1277 ◽  
Author(s):  
T. Rupp ◽  
M. Jubeau ◽  
B. Wuyam ◽  
S. Perrey ◽  
P. Levy ◽  
...  

Contradictory results regarding the effect of hypoxia on cortex excitability have been reported in healthy subjects, possibly depending on hypoxia exposure duration. We evaluated the effects of 1- and 3-h hypoxia on motor corticospinal excitability, intracortical inhibition, and cortical voluntary activation (VA) using transcranial magnetic stimulation (TMS). TMS to the quadriceps cortex area and femoral nerve electrical stimulations were performed in 14 healthy subjects. Motor-evoked potentials (MEPs at 50–100% maximal voluntary contraction; MVC), recruitment curves (MEPs at 30–100% maximal stimulator power output at 50% MVC), cortical silent periods (CSP), and VA were measured in normoxia and after 1 ( n = 12) or 3 ( n = 10) h of hypoxia (FiO2 = 0.12). One-hour hypoxia did not modify any parameters of corticospinal excitability but reduced slightly VA, probably due to the repetition of contractions 1 h apart (96 ± 4% vs. 94 ± 4%; P = 0.03). Conversely, 3-h hypoxia significantly increased 1) MEPs of the quadriceps muscles at all force levels (+26 ± 14%, +24 ± 12%, and +27 ± 17% at 50, 75, and 100% MVC, respectively; P = 0.01) and stimulator power outputs (e.g., +21 ± 14% at 70% maximal power), and 2) CSP at all force levels (+20 ± 18%, +18 ± 19%, and +14 ± 22% at 50, 75, and 100% MVC, respectively; P = 0.02) and stimulator power outputs (e.g., +9 ± 8% at 70% maximal power), but did not modify VA (98 ± 1% vs. 97 ± 3%; P = 0.42). These data demonstrate a time-dependent hypoxia-induced increase in motor corticospinal excitability and intracortical inhibition, without changes in VA. The impact of these cortical changes on physical or psychomotor performances needs to be elucidated to better understand the cerebral effects of hypoxemia.


Sign in / Sign up

Export Citation Format

Share Document