Abstract P134: Preliminary Data: Dietary Nitrate Supplementation Does Not Extend Dry Static Apnea Or Wingate Performance

Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Colin Carriker ◽  
Phillip Armentrout ◽  
Sarah Levine ◽  
James Smoliga

Introduction: Previous studies have examined dietary nitrate supplementation and its effects on dry static apnea, and peak power. Dietary nitrate supplementation has been found to increase maximal apnea and peak power output. The purpose of this study was to determine the effects of beetroot juice on dry static apnea and Wingate performance. Hypothesis: Dietary nitrate will improve maximal breath hold time and peak power output. Dietary nitrate will improve tolerance to CO2, thereby improving maximal breath hold time and anaerobic capacity. Methods: In a randomized, double-blind, counterbalanced study, five healthy males (20.4±0.89 years) visited the lab on 3 separate occasions each separated by one week. Visit 1 served as a Wingate and breath hold familiarization visit. Prior to visits 2 and 3 participants were instructed to drink a beverage either a placebo (negligible nitrate content, PL) or dietary nitrate rich beverage (12.4 mmol nitrate, NIT) during the 4 days leading up to their next visit. Visits 2 and 3 consisted of two submaximal breath holds (80% of maximal determined during visit 1), with 2 minutes of rest between and three minutes of rest preceding the final breath hold for maximal duration. Finally, participants completed a standardized 10-minute warmup on the cycle ergometer before completing a 30-second maximal effort Wingate test. Results: A linear mixed effects model was used to determine whether treatment (NIT vs. PL) was associated with differences in VCO2 or PetCO2. Time (0, 10, 20, 30 min post-breath hold) and Treatment both served as repeated measures. Models were developed using multiple repeated measures covariance matrix structures, and the model with the lowest AIC was chosen as the final model. The interaction between time and treatment was included in the original models, and was removed if it was not statistically significant. Time was a statistically significant factor for VCO2 and PetCO2 (p < 0.001). Treatment, and the Time x Treatment interaction was not significant for either variable. No differences between NIT and PL were observed during the Wingate test for either time to peak power (5.02±2.45 and 6.2±2.43 sec, respectively) or maximal power (9.73±1.01 and 9.72±1.03 watts/kg, respectively) and fatigue index (49.42±14.98 and 47.30±6.99 watts/sec, respectively). Conclusion: Preliminary data indicates that in a general population four days of dietary nitrate supplementation may not improve breath hold time, tolerance to carbon dioxide in the lungs, or Wingate performance.

1995 ◽  
Vol 27 (Supplement) ◽  
pp. S105
Author(s):  
J. S. Osbeck ◽  
S. N. Maiorca ◽  
V. J. Amico ◽  
K. W. Rundell

2020 ◽  
Vol 15 (9) ◽  
pp. 1303-1308
Author(s):  
Marco J. Konings ◽  
Florentina J. Hettinga

Purpose: The behavior of an opponent has been shown to alter pacing and performance. To advance our understanding of the impact of perceptual stimuli such as an opponent on pacing and performance, this study examined the effect of a preexercise cycling protocol on exercise regulation with and without an opponent. Methods: Twelve trained cyclists performed 4 experimental, self-paced 4-km time-trial conditions on an advanced cycle ergometer in a randomized, counterbalanced order. Participants started the time trial in rested state (RS) or performed a 10-min cycling protocol at 67% peak power output (CP) before the time trial. During the time trials, participants had to ride alone (NO) or against a virtual opponent (OP). The experimental conditions were (1) RS-NO, (2) RS-OP, (3) CP-NO, and (4) CP-OP. Repeated-measures analyses of variance (P < .05) were used to examine differences in pacing and performance in terms of power output. Results: A faster pace was adopted in the first kilometer during RS-OP (318 [72] W) compared with RS-NO (291 [81] W; P = .03), leading to an improved finishing time during RS-OP compared with RS-NO (P = .046). No differences in either pacing or performance were found between CP-NO and CP-OP. Conclusions: The evoked response by the opponent to adopt a faster initial pace in the 4-km time trial disappeared when cyclists had to perform a preceding cycling protocol. The outcomes of this study highlight that perceived exertion alters the responsiveness to perceptual stimuli of cyclists during competition.


Author(s):  
Michal Krzysztofik ◽  
Michal Wilk ◽  
Aleksandra Filip ◽  
Piotr Zmijewski ◽  
Adam Zajac ◽  
...  

Background: The aim of the present study was to evaluate the effects of post-activation performance enhancement (PAPE) on resistance training volume during the bench press exercise (BP). The study included 12 healthy strength-trained males (age 25.2 ± 2.1 years, body mass 92.1 ± 8.7 kg, BP one-repetition maximum (1RM) 28.8 ± 10.5 kg, training experience 6.3 ± 2.1 years). Methods: The experiment was performed following a randomized crossover design, where each participant performed two different exercise protocols with a conditioning activity (CA) consisting of the BP with three sets of three repetitions at 85% 1RM (PAPE), and a control without the CA (CONT). To assess the differences between PAPE and CONT, the participants performed three sets of the BP to volitional failure at 60% 1RM. The differences in the number of performed repetitions (REP), time under tension (TUT), peak power output (PP), mean of peak power output (PPMEAN), mean power output (MP), peak bar velocity (PV), mean of peak bar velocity (PVMEAN), and mean bar velocity (MV) between the CONT and PAPE conditions were examined using repeated measures ANOVA. Results: The post-hoc analysis for the main condition effect indicated significant increases in TUT (p < 0.01) for the BP following PAPE, compared to the CONT condition. Furthermore, there was a significant increase in TUT (p < 0.01) in the third set for PAPE compared to the CONT condition. No statistically significant main effect was revealed for REP, PP, PV, PPMEAN, PVMEAN, MP, and MV. Conclusion: The main finding of the study was that the PAPE protocol increased training volume based on TUT, without changes in the number of preformed REP.


2011 ◽  
Vol 111 (1) ◽  
pp. 228-235 ◽  
Author(s):  
Elias K. Tomaras ◽  
Brian R. MacIntosh

The traditional warm-up (WU) used by athletes to prepare for a sprint track cycling event involves a general WU followed by a series of brief sprints lasting ≥50 min in total. A WU of this duration and intensity could cause significant fatigue and impair subsequent performance. The purpose of this research was to compare a traditional WU with an experimental WU and examine the consequences of traditional and experimental WU on the 30-s Wingate test and electrically elicited twitch contractions. The traditional WU began with 20 min of cycling with a gradual intensity increase from 60% to 95% of maximal heart rate; then four sprints were performed at 8-min intervals. The experimental WU was shorter with less high-intensity exercise: intensity increased from 60% to 70% of maximal heart rate over 15 min; then just one sprint was performed. The Wingate test was conducted with a 1-min lead-in at 80% of optimal cadence followed by a Wingate test at optimal cadence. Peak active twitch torque was significantly lower after the traditional than experimental WU (86.5 ± 3.3% vs. 94.6 ± 2.4%, P < 0.05) when expressed as percentage of pre-WU amplitude. Wingate test performance was significantly better ( P < 0.01) after experimental WU (peak power output = 1,390 ± 80 W, work = 29.1 ± 1.2 kJ) than traditional WU (peak power output = 1,303 ± 89 W, work = 27.7 ± 1.2 kJ). The traditional track cyclist's WU results in significant fatigue, which corresponds with impaired peak power output. A shorter and lower-intensity WU permits a better performance.


2019 ◽  
Author(s):  
James Graeme Wrightson ◽  
Louis Passfield

Objectives: To examine the effect of exercise at and slightly above the maximal lactate steady state (MLSS) on self-efficacy, affect and effort, and their associations with exercise tolerance.Design: Counterbalanced, repeated measures designMethod: Participants performed two 30‐minute constant‐load cycling exercise at a power output equal to that at MLSS and 10 W above MLSS, immediately followed by a time‐to‐exhaustion test at 80% of their peak power output. Self-efficacy, affect and effort were measured before and after 30 minutes of cycling at and above MLSS.Results: Negative affect and effort higher, and self-efficacy and time to exhaustion were reduced, following cycling at MLSS + 10 W compared to cycling at the MLSS. Following exercise at the MLSS self-efficacy, affect and effort were all associated with subsequent time-to exhaustion. However, following exercise at MLSS + 10 W, only affect was associated with time-to exhaustion. Conclusions: Self efficacy, affect and effort are profoundly affected by physiological state, highlighting the influence of somatic states on perceptions and emotions during exercise. The affective response to exercise appears to be associated with exercise tolerance, indicating that the emotional, as well as physiological, responses should be considered when prescribing exercise training.


2016 ◽  
Vol 311 (6) ◽  
pp. H1520-H1529 ◽  
Author(s):  
Sinead T. J. McDonagh ◽  
Anni Vanhatalo ◽  
Jonathan Fulford ◽  
Lee J. Wylie ◽  
Stephen J. Bailey ◽  
...  

We tested the hypothesis that dietary nitrate (NO3−)-rich beetroot juice (BR) supplementation could partially offset deteriorations in O2transport and utilization and exercise tolerance after blood donation. Twenty-two healthy volunteers performed moderate-intensity and ramp incremental cycle exercise tests prior to and following withdrawal of ∼450 ml of whole blood. Before donation, all subjects consumed seven 70-ml shots of NO3−-depleted BR [placebo (PL)] in the 48 h preceding the exercise tests. During the 48 h after blood donation, subjects consumed seven shots of BR (each containing 6.2 mmol of NO3−, n = 11) or PL ( n = 11) before repeating the exercise tests. Hemoglobin concentration and hematocrit were reduced by ∼8–9% following blood donation ( P < 0.05), with no difference between the BR and PL groups. Steady-state O2uptake during moderate-intensity exercise was ∼4% lower after than before donation in the BR group ( P < 0.05) but was unchanged in the PL group. The ramp test peak power decreased from predonation (341 ± 70 and 331 ± 68 W in PL and BR, respectively) to postdonation (324 ± 69 and 322 ± 66 W in PL and BR, respectively) in both groups ( P < 0.05). However, the decrement in performance was significantly less in the BR than PL group (2.7% vs. 5.0%, P < 0.05). NO3−supplementation reduced the O2cost of moderate-intensity exercise and attenuated the decline in ramp incremental exercise performance following blood donation. These results have implications for improving functional capacity following blood loss.


1996 ◽  
Vol 271 (2) ◽  
pp. C676-C683 ◽  
Author(s):  
J. J. Widrick ◽  
S. W. Trappe ◽  
D. L. Costill ◽  
R. H. Fitts

Gastrocnemius muscle fiber bundles were obtained by needle biopsy from five middle-aged sedentary men (SED group) and six age-matched endurance-trained master runners (RUN group). A single chemically permeabilized fiber segment was mounted between a force transducer and a position motor, subjected to a series of isotonic contractions at maximal Ca2+ activation (15 degrees C), and subsequently run on a 5% polyacrylamide gel to determine myosin heavy chain composition. The Hill equation was fit to the data obtained for each individual fiber (r2 > or = 0.98). For the SED group, fiber force-velocity parameters varied (P < 0.05) with fiber myosin heavy chain expression as follows: peak force, no differences: peak tension (force/fiber cross-sectional area), type IIx > type IIa > type I; maximal shortening velocity (Vmax, defined as y-intercept of force-velocity relationship), type IIx = type IIa > type I; a/Pzero (where a is a constant with dimensions of force and Pzero is peak isometric force), type IIx > type IIa > type I. Consequently, type IIx fibers produced twice as much peak power as type IIa fibers, whereas type IIa fibers produced about five times more peak power than type I fibers. RUN type I and IIa fibers were smaller in diameter and produced less peak force than SED type I and IIa fibers. The absolute peak power output of RUN type I and IIa fibers was 13 and 27% less, respectively, than peak power of similarly typed SED fibers. However, type I and IIa Vmax and a/Pzero were not different between the SED and RUN groups, and RUN type I and IIa power deficits disappeared after power was normalized for differences in fiber diameter. Thus the reduced absolute peak power output of the type I and IIa fibers from the master runners was a result of the smaller diameter of these fibers and a corresponding reduction in their peak isometric force production. This impairment in absolute peak power production at the single fiber level may be in part responsible for the reduced in vivo power output previously observed for endurance-trained athletes.


Author(s):  
Sam Lowings ◽  
Oliver Michael Shannon ◽  
Kevin Deighton ◽  
Jamie Matu ◽  
Matthew John Barlow

Nitrate supplementation appears to be most ergogenic when oxygen availability is restricted and subsequently may be particularly beneficial for swimming performance due to the breath-hold element of this sport. This represents the first investigation of nitrate supplementation and swimming time-trial (TT) performance. In a randomized double-blind repeated-measures crossover study, ten (5 male, 5 female) trained swimmers ingested 140ml nitrate-rich (~12.5mmol nitrate) or nitrate-depleted (~0.01mmol nitrate) beetroot juice. Three hours later, subjects completed a maximal effort swim TT comprising 168m (8 × 21m lengths) backstroke. Preexercise fractional exhaled nitric oxide concentration was significantly elevated with nitrate compared with placebo, Mean (SD): 17 (9) vs. 7 (3)p.p.b., p = .008. Nitrate supplementation had a likely trivial effect on overall swim TT performance (mean difference 1.22s; 90% CI -0.18–2.6s; 0.93%; p = .144; d = 0.13; unlikely beneficial (22.6%), likely trivial (77.2%), most unlikely negative (0.2%)). The effects of nitrate supplementation during the first half of the TT were trivial (mean difference 0.29s; 90% CI -0.94–1.5s; 0.46%; p = .678; d = 0.05), but there was a possible beneficial effect of nitrate supplementation during the second half of the TT (mean difference 0.93s; 90% CI 0.13–1.70s; 1.36%; p = .062; d = 0.24; possibly beneficial (63.5%), possibly trivial (36.3%), most unlikely negative (0.2%)). The duration and speed of underwater swimming within the performance did not differ between nitrate and placebo (both p > .30). Nitrate supplementation increased nitric oxide bioavailability but did not benefit short-distance swimming performance or the underwater phases of the TT. Further investigation into the effects of nitrate supplementation during the second half of performance tests may be warranted.


1994 ◽  
Vol 77 (3) ◽  
pp. 1403-1410 ◽  
Author(s):  
R. Callister ◽  
A. V. Ng ◽  
D. R. Seals

We tested the hypothesis that sympathetic vasoconstrictor nerve activity to nonactive skeletal muscle (MSNA) decreases immediately before and remains suppressed during initiation of conventional large muscle upright dynamic exercise in humans. In 11 healthy young subjects, adequate recordings of MSNA from the radial nerve in the arm were obtained during upright seated rest (control) and throughout 1 min of leg-cycling exercise at one or more submaximal workloads (range 33–266 W; approximately 10–80% of peak power output). MSNA was analyzed during four consecutive time intervals; control, preparation for cycling (end of control to onset of pedal movement), initiation of cycling (onset of pedal movement to attainment of target power output), and the initial 60 s of cycling at target power output. MSNA decreased (P < 0.05) abruptly and markedly in all subjects [to 19 +/- 4% (SE) of control levels] during the preparation period before the 33-W load and remained suppressed throughout the period of initiation of cycling in 8 of 11 subjects; MSNA increased during the initiation period in three subjects in whom diastolic arterial pressure fell below control levels. This general pattern was observed at all loads. MSNA remained at or below control levels throughout the 1 min of cycling exercise at 33–166 W. MSNA increased above control levels during the latter portion of the 1 min of cycling only at loads > or = 60% of peak power output.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document