Forearm blood flow follows work rate during submaximal dynamic forearm exercise independent of sex

2007 ◽  
Vol 103 (6) ◽  
pp. 1950-1957 ◽  
Author(s):  
Joaquin U. Gonzales ◽  
Benjamin C. Thompson ◽  
John R. Thistlethwaite ◽  
Allison J. Harper ◽  
Barry W. Scheuermann

To test the hypothesis that sex influences forearm blood flow (FBF) during exercise, 15 women and 16 men of similar age [women 24.3 ± 4.0 (SD) vs. men 24.9 ± 4.5 yr] but different forearm muscle strength (women 290.7 ± 44.4 vs. men 509.6 ± 97.8 N; P < 0.05) performed dynamic handgrip exercise as the same absolute workload was increased in a ramp function (0.25 W/min). Task failure was defined as the inability to maintain contraction rate. Blood pressure and FBF were measured on separate arms during exercise by auscultation and Doppler ultrasound, respectively. Muscle strength was positively correlated with endurance time ( r = 0.72, P < 0.01) such that women had a shorter time to task failure than men (450.5 ± 113.0 vs. 831.3 ± 272.9 s; P < 0.05). However, the percentage of maximal handgrip strength achieved at task failure was similar between sexes (14% maximum voluntary contraction). FBF was similar between women and men throughout exercise and at task failure (women 13.6 ± 5.3 vs. men 14.5 ± 4.9 ml·min−1·100 ml−1). Mean arterial pressure was lower in women at rest and during exercise; thus calculated forearm vascular conductance (FVC) was higher in women during exercise but similar between sexes at task failure (women 0.13 ± 0.05 vs. men 0.11 ± 0.04 ml·min−1·100 ml−1·mmHg−1). In conclusion, the similar FBF during exercise was achieved by a higher FVC in the presence of a lower MAP in women than men. Still, FBF remained coupled to work rate (and presumably metabolic demand) during exercise irrespective of sex.

1996 ◽  
Vol 81 (4) ◽  
pp. 1516-1521 ◽  
Author(s):  
J. K. Shoemaker ◽  
H. L. Naylor ◽  
Z. I. Pozeg ◽  
R. L. Hughson

Shoemaker, J. K., H. L. Naylor, Z. I. Pozeg, and R. L. Hughson. Failure of prostaglandins to modulate the time course of blood flow during dynamic forearm exercise in humans. J. Appl. Physiol. 81(4): 1516–1521, 1996.—The time course and magnitude of increases in brachial artery mean blood velocity (MBV; pulsed Doppler), diameter ( D; echo Doppler), mean perfusion pressure (MPP; Finapres), shear rate (γ˙ = 8 ⋅ MBV/ D), and forearm blood flow (FBF = MBV ⋅ π r 2) were assessed to investigate the effect that prostaglandins (PGs) have on the hyperemic response on going from rest to rhythmic exercise in humans. While supine, eight healthy men performed 5 min of dynamic handgrip exercise by alternately raising and lowering a 4.4-kg weight (∼10% maximal voluntary contraction) with a work-to-rest cycle of 1:1 (s/s). When the exercise was performed with the arm positioned below the heart, the rate of increase in MBV and γ˙ was faster compared with the same exercise performed above the heart. Ibuprofen (Ibu; 1,200 mg/day, to reduce PG-induced vasodilation) and placebo were administered orally for 2 days before two separate testing sessions in a double-blind manner. Resting heart rate was reduced in Ibu (52 ± 3 beats/min) compared with placebo (57 ± 3 beats/min) ( P < 0.05) without change to MPP. With placebo, D increased in both arm positions from ∼4.3 mm at rest to ∼4.5 mm at 5 min of exercise ( P < 0.05). This response was not altered with Ibu ( P > 0.05). Ibu did not alter the time course of MBV or forearm blood flow ( P > 0.05) in either arm position. The γ˙ was significantly greater in Ibu vs. placebo at 30 and 40 s of above the heart exercise and for all time points after 25 s of below the heart exercise ( P < 0.05). Because PG inhibition altered the time course ofγ˙ at the brachial artery, but not FBF, it was concluded that PGs are not essential in regulating the blood flow responses to dynamic exercise in humans.


2014 ◽  
Vol 117 (10) ◽  
pp. 1207-1211 ◽  
Author(s):  
Sushant M. Ranadive ◽  
Michael J. Joyner ◽  
Branton G. Walker ◽  
Jennifer L. Taylor ◽  
Darren P. Casey

Hyperoxia can cause substantial reductions in peripheral and coronary blood flow at rest and during exercise, which may be caused by reactive oxygen species (ROS) generated during hyperoxia. The aim of this study was to investigate the role of ROS in hyperoxia-induced reductions in skeletal muscle blood flow during forearm exercise. We hypothesized that infusion of vitamin C would abolish the effects of hyperoxia on the forearm blood flow (FBF) responses to exercise. Twelve young healthy adults performed rhythmic forearm handgrip exercise (10% of maximum voluntary contraction for 5 min) during normoxia and hyperoxia. For each condition, two trials were conducted with intra-arterial administration of saline or vitamin C. FBF was measured using Doppler ultrasound. During hyperoxia with saline, FBF and forearm vascular conductance (FVC) were 86.3 ± 5.1 and 86.8 ± 5.2%, respectively, of the normoxic values (100%) ( P < 0.05). During vitamin C, hyperoxic FBF and FVC responses were 90.9 ± 4.2 and 90.9 ± 4.1%, respectively, of the normoxic values ( P = 0.57 and 0.59). Subjects were then divided into three subgroups based on their percent decrease in FBF (>20, 10–20, and <10%) during hyperoxia. In the subgroup that demonstrated the greatest hyperoxia-induced changes (>20%), FBF and FVC during hyperoxia were 67.1 ± 4.0 and 66.8 ± 3.6%, respectively, of the normoxic values. Vitamin C abolished these effects on FBF and FVC with values that were 102.0 ± 5.2 and 100.8 ± 6.1%, respectively. However, vitamin C had no effect in the other two subgroups. This analysis is consistent with the idea that ROS generation blunts the FBF responses to exercise in the subjects most affected by hyperoxia.


1998 ◽  
Vol 84 (2) ◽  
pp. 754-758 ◽  
Author(s):  
Christopher K. Dyke ◽  
Niki M. Dietz ◽  
Robert L. Lennon ◽  
David O. Warner ◽  
Michael J. Joyner

Dyke, Christopher K., Niki M. Dietz, Robert L. Lennon, David O. Warner, and Michael J. Joyner. Forearm blood flow responses to handgripping after local neuromuscular blockade. J. Appl. Physiol. 84(2): 754–758, 1998.—To test the hypothesis that acetylcholine “spillover” from motor nerves contributes significantly to skeletal muscle vasodilation during exercise, we measured the forearm blood flow responses during attempted handgripping after local paralysis of the forearm with the neuromuscular-blocking drug pipecuronium. This compound blocks postsynaptic nicotinic receptors but has no impact on acetylcholine release from motor nerves. The drug was administered selectively to one forearm by using regional intravenous drug administration techniques in five subjects. Pipecuronium reduced maximum forearm grip strength from 40.0 ± 3.2 kg before treatment to 0.0 kg after treatment. By contrast, drug administration had no effect on maximum voluntary contraction in the untreated forearm (41.3 ± 3.3 vs. 41.4 ± 2.7 kg). During 2 min of attempted maximal contraction of the paralyzed forearm, the forearm blood flow increased from only 3.4 ± 0.8 to 4.8 ± 1.2 ml ⋅ 100 ml−1 ⋅ min−1( P < 0.05). Heart rate increased from 63 ± 3 to 73 ± 8 beats/min ( P > 0.05) during attempted contraction, and only three of five subjects showed obvious increases in heart rate. Mean arterial pressure increased significantly ( P < 0.05) from 102 ± 6 to 109 ± 9 mmHg during attempted contractions. When these increases in flow are considered in the context of the marked (10-fold or greater) increases in flow seen in contracting forearm skeletal muscle, it appears that acetylcholine spillover from motor nerves has, at most, a minimal impact on the hyperemic responses to contraction in humans.


2002 ◽  
Vol 93 (2) ◽  
pp. 555-560 ◽  
Author(s):  
Darren S. DeLorey ◽  
Simon S. Wang ◽  
J. Kevin Shoemaker

The effect of augmented sympathetic outflow on forearm vascular conductance after single handgrip contractions of graded intensity was examined to determine whether sympatholysis occurs early in exercise ( n = 7). While supine, subjects performed contractions that were 1 s in duration and 15, 30, and 60% of maximal voluntary contraction (MVC) in intensity. The contractions were repeated during control and lower body negative pressure (LBNP) (−40 mmHg) sessions. Forearm blood flow (FBF; Doppler ultrasound) and mean arterial pressure were measured continuously for 30 s before and 60 s after the single contractions. Vascular conductance (VC) was calculated. Total postcontraction blood flow increased in an exercise intensity-dependent manner. Compared with control, LBNP caused a reduction in baseline and postexercise FBF ( P < 0.05), VC ( P < 0.01), as well as total excess flow ( P < 0.01). Specifically, during LBNP, baseline FBF and VC were reduced by 29 and 34% of control, respectively ( P < 0.05). After the 15% MVC contraction, peak VC during LBNP was reduced by a magnitude similar to that during baseline (i.e., ∼30%), but it was only reduced by 15% during both the 30 and 60% MVC trials ( P < 0.01). It was concluded that the stimuli for exercise hyperemia during moderate and heavy, but not mild, handgrip exercise intensities, diminish the vasoconstrictor effects of LBNP. Furthermore, these data demonstrate that this sympatholysis occurs early in exercise.


1998 ◽  
Vol 85 (6) ◽  
pp. 2249-2254 ◽  
Author(s):  
R. W. Brock ◽  
M. E. Tschakovsky ◽  
J. K. Shoemaker ◽  
J. R. Halliwill ◽  
M. J. Joyner ◽  
...  

We tested the hypothesis that ACh or nitric oxide (NO) might be involved in the vasodilation that accompanies a single contraction of the forearm. Eight adults (3 women and 5 men) completed single 1-s-duration contractions of the forearm to raise and lower a weight equivalent to ∼20% maximal voluntary contraction through a distance of 5 cm. In a second protocol, each subject had a cuff, placed completely about the forearm, inflated to 120 mmHg for a 1-s period, then released as a simulation of the mechanical effect of muscle contraction. Three conditions were studied, always in this order: 1) control, with intra-arterial infusion of saline; 2) after muscarinic blockade with atropine; and 3) after NO synthase inhibition with N G-monomethyl-l-arginine (l-NMMA) plus atropine. Forearm blood flow (FBF), measured by combined pulsed and echo Doppler ultrasound, was reduced at rest with l-NMMA-atropine compared with the other two conditions. After the single contraction, there were no effects of atropine, butl-NMMA reduced the peak FBF and the total postcontraction hyperemia. After the single cuff inflation, atropine had no effects, whereasl-NMMA caused changes similar to those seen after contraction, reducing the peak FBF and the total hyperemia. The observation thatl-NMMA reduced FBF in response to both cuff inflation and a brief contraction indicates that NO from the vascular endothelium might modulate the basal level of vascular tone and the mechanical component of the hyperemia with exercise. It is unlikely that ACh and NO from the endothelium are involved in the dilator response to a single muscle contraction.


1992 ◽  
Vol 263 (4) ◽  
pp. H1078-H1083 ◽  
Author(s):  
M. J. Joyner ◽  
L. A. Nauss ◽  
M. A. Warner ◽  
D. O. Warner

This study tested the effects of sympathetically mediated changes in blood flow to active muscles on muscle O2 uptake (VO2) in humans. Four minutes of graded (15-80% of maximum voluntary contraction, MVC) rhythmic handgrip exercise were performed. Forearm blood flow (FBF) (plethysmography) and deep vein O2 saturation were measured each minute. Forearm O2 uptake was calculated using the Fick principle. In protocol 1, exercise was performed while supine and again while upright to augment sympathetic outflow to the active muscles. Standing reduced FBF at rest from 3.6 to 2.2 ml.100 ml-1.min-1 (P < 0.05). During light exercise (15-40% MVC) FBF was unaffected by body position. Standing reduced FBF (P < 0.05) from 36.0 to 25.2 ml.100 ml-1.min-1 and forearm VO2 from 38.2 to 28.1 ml.kg-1.min-1 during the final work load. In protocol 2, exercise was performed while supine before and after local anesthetic block of the sympathetic nerves to the forearm. Sympathetic block increased FBF at rest from 3.1 to 8.9 ml.100 ml-1.min-1 (P < 0.05), and FBF was higher during all work loads At 70-80% of MVC sympathetic block increased FBF from 35.4 to 50.7 ml.100 ml-1.min-1 (P < 0.05), and forearm VO2 from 45.5 to 54.2 ml.kg-1.min-1 (P < 0.05). These results suggest that in humans sympathetic nerves modulate blood flow to active muscles during light and heavy rhythmic exercise and that this restraint of flow can limit O2 uptake in muscles performing heavy rhythmic exercise.


2020 ◽  
Vol 11 ◽  
Author(s):  
Cedrik Armes ◽  
Henry Standish-Hunt ◽  
Patroklos Androulakis-Korakakis ◽  
Nick Michalopoulos ◽  
Tsvetelina Georgieva ◽  
...  

In resistance training, the use of predicting proximity to momentary task failure (MF, i.e., maximum effort), and repetitions in reserve scales specifically, is a growing approach to monitoring and controlling effort. However, its validity is reliant upon accuracy in the ability to predict MF which may be affected by congruence of the perception of effort compared with the actual effort required. The present study examined participants with at least 1 year of resistance training experience predicting their proximity to MF in two different experiments using a deception design. Within each experiment participants performed four trials of knee extensions with single sets (i.e., bouts of repetitions) to their self-determined repetition maximum (sdRM; when they predicted they could not complete the next repetition if attempted and thus would reach MF if they did) and MF (i.e., where despite attempting to do so they could not complete the current repetition). For the first experiment (n = 14) participants used loads equal to 70% of a one repetition maximum (1RM; i.e., the heaviest load that could be lifted for a single repetition) performed in a separate baseline session. Aiming to minimize participants between day variability in repetition performances, in the second separate experiment (n = 24) they used loads equal to 70% of their daily isometric maximum voluntary contraction (MVC). Results suggested that participants typically under predicted the number of repetitions they could perform to MF with a meta-analytic estimate across experiments of 2.0 [95%CIs 0.0 to 4.0]. Participants with at least 1 year of resistance training experience are likely not adequately accurate at gauging effort in submaximal conditions. This suggests that perceptions of effort during resistance training task performance may not be congruent with the actual effort required. This has implications for controlling, programming, and manipulating the actual effort in resistance training and potentially on the magnitude of desired adaptations such as improvements in muscular hypertrophy and strength.


2003 ◽  
Vol 95 (4) ◽  
pp. 1515-1522 ◽  
Author(s):  
L Rochette ◽  
S. K. Hunter ◽  
N Place ◽  
R Lepers

Ten young men sustained an isometric contraction of the knee extensor muscles at 20% of the maximum voluntary contraction (MVC) torque on three separate occasions in a seated posture. Subjects performed an isometric knee extension contraction on a fourth occasion in a supine posture. The time to task failure for the seated posture was similar across sessions (291 ± 84 s; P > 0.05), and the MVC torque was similarly reduced across sessions after the fatiguing contraction (42 ± 12%). The rate of increase in electromyograph (EMG) activity (%MVC) and torque fluctuations during the fatiguing contractions were similar across sessions. However, the rate of increase in EMG differed among the knee extensor muscles: the rectus femoris began at a greater amplitude (31.5 ± 11.0%) compared with the vastus lateralis and vastus medialis muscles (18.8 ± 5.3%), but it ended at a similar value (45.4 ± 3.1%). The time to task failure and increase in EMG activity were similar for the seated and supine tasks; however, the reduction in MVC torque was greater for the seated posture. These findings indicate that the time to task failure for the knee extensor muscles that have a common tendon insertion did not alter over repeat sessions as had been observed for the elbow flexor muscles (Hunter SK and Enoka RM. J Appl Physiol 94: 108-118, 2003).


2020 ◽  
Vol 30 (2) ◽  
pp. 258-267 ◽  
Author(s):  
Stefania Dalise ◽  
Peppino Tropea ◽  
Luca Galli ◽  
Andrea Sbrana ◽  
Carmelo Chisari

Cancer cachexia has been reported to be directly responsible for at least 20% of cancer deaths. Management of muscle wasting in cancer-associated cachexia appears to be of pivotal importance for survival of patients. In this regard, it would be interesting to identify before its patent appearance eventual functional markers of muscle damage, to plan specific exercise protocols to counteract cachexia. The muscle function of 13 oncologic patients and 15 controls was analyzed through: i) analysis of the oxidative metabolism, indirectly evaluated trough dosage of blood lactate levels before and after a submaximal incremental exercise on a treadmill; ii) analysis of strength and, iii) endurance, in both lower and upper limbs muscles, employing an isokinetic dynamometer. Statistical analyses were carried out to compare the muscle activities between groups. Analysis of oxidative metabolism during the incremental exercise on a treadmill showed that patients performed a shorter exercise than controls. Lactate levels were significantly higher in patients both at baseline and after the task. Muscle strength analysis in patients group showed a reduction of Maximum Voluntary Contraction during the isometric contraction and, a tendency to fatigue during endurance task. Data emerging from this study highlight an impairment of muscle oxidative metabolism in subjects affected by a pre-cachexia stage of cancer. A trend of precocious fatigability and an impairment of muscle strength production were also observed. This evidence underlines the relevance of assessing muscle function in order to develop novel rehabilitative approaches able to counteract motor impairment and eventually to prevent cachexia in these patients.


1996 ◽  
Vol 80 (4) ◽  
pp. 1279-1284 ◽  
Author(s):  
S. Homma ◽  
H. Eda ◽  
S. Ogasawara ◽  
A. Kagaya

We estimated a blood flow index, O2 supply index, and O2 consumption index from near-infrared (NIR) signals during venous occlusion imposed at rest and immediately after handgrip exercise with loads equal to 5, 10, 15, 20, 25, and 30% of the maximum voluntary contraction. We also estimated forearm blood flow (BFfa) by strain-gauge plethysmography and forearm O2 consumption (VO2fa) by the invasive method. There was a significant correlation between the rate of increase in total hemoglobin during venous occlusion obtained from NIR signals and BFfa in each subject (r = 0.853 approximately 0.981, P < 0.001). There was also a significant correlation (r = 0.854 approximately 0.944, P < 0.001) between the O2 consumption index estimated from NIR signals and VO2fa. The mean values for O2 supply index in five subjects increased with exercise intensity, while the O2 consumption index showed no further increase about 25% of maximum voluntary contraction. We found significant positive correlations between the O2 supply index and BFfa (r = 0.986, P < 0.001) and the O2 consumption index and VO2fa (r = 0.976, P < 0.001) during exercise at 5-30% of maximum voluntary contraction. These results demonstrate that analysis of NIR signals during venous occlusion provides an advantageous method of estimation of O2 supply and consumption in working muscles during exercise of varying intensity.


Sign in / Sign up

Export Citation Format

Share Document