Effect of priming exercise and body position on pulmonary oxygen uptake and muscle deoxygenation kinetics during cycle exercise

2020 ◽  
Vol 129 (4) ◽  
pp. 810-822
Author(s):  
Richie P. Goulding ◽  
Simon Marwood ◽  
Dai Okushima ◽  
David C. Poole ◽  
Thomas J. Barstow ◽  
...  

Here we show that oxygen uptake (V̇o2) kinetics are slower in the supine compared with upright body position, an effect that is associated with an increased amplitude of skeletal muscle deoxygenation in the supine position. After priming in the supine position, the amplitude of muscle deoxygenation remained markedly elevated above that observed during upright exercise. Hence, the priming effect cannot be solely attributed to enhanced O2 delivery, and enhancements to intracellular O2 utilization must also be contributory.

2020 ◽  
Vol 52 (7S) ◽  
pp. 207-207
Author(s):  
Richie P. Goulding ◽  
Dai Okushima ◽  
Simon Marwood ◽  
Tze-Tuan Lei ◽  
Narihiko Kondo ◽  
...  

2019 ◽  
Vol 127 (4) ◽  
pp. 1140-1149 ◽  
Author(s):  
Joel Rocha ◽  
Norita Gildea ◽  
Donal O’Shea ◽  
Simon Green ◽  
Mikel Egaña

The pulmonary oxygen uptake (V̇o2) kinetics during the transition to moderate-intensity exercise is slowed in individuals with type 2 diabetes (T2D), at least in part because of limitations in O2 delivery. The present study tested the hypothesis that a prior heavy-intensity warm-up or “priming” exercise (PE) bout would accelerate V̇o2 kinetics in T2D, because of a better matching of O2 delivery to utilization. Twelve middle-aged individuals with T2D and 12 healthy controls (ND) completed moderate-intensity constant-load cycling bouts either without (Mod A) or with (Mod B) prior PE. The rates of muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin concentration, [HHb+Mb]) and oxygenation (i.e., tissue oxygenation index) were continuously measured by near-infrared spectroscopy at the vastus lateralis muscle. The local matching of O2 delivery to O2 utilization was assessed by the Δ[HHb+Mb]-to-ΔV̇o2 ratio. Both groups demonstrated an accelerated V̇O2 kinetics response during Mod B compared with Mod A (T2D, 32 ± 9 vs. 42 ± 12 s; ND, 28 ± 9 vs. 34 ± 8 s; means ± SD) and an elevated muscle oxygenation throughout Mod B, whereas the [HHb+Mb] amplitude was greater during Mod B only in individuals with T2D. The [HHb+Mb] kinetics remained unchanged in both groups. In T2D, Mod B was associated with a decrease in the “overshoot” relative to steady state in the Δ[HHb+Mb]-to-ΔV̇o2 ratio (1.17 ± 0.17 vs. 1.05 ± 0.15), whereas no overshoot was observed in the control group before (1.04 ± 0.12) or after (1.01 ± 0.12) PE. Our findings support a favorable priming-induced acceleration of the V̇o2 kinetics response in middle-aged individuals with uncomplicated T2D attributed to an enhanced matching of microvascular O2 delivery to utilization. NEW & NOTEWORTHY Heavy-intensity “priming” exercise (PE) elicited faster pulmonary oxygen uptake (V̇o2) kinetics during moderate-intensity cycling exercise in middle-aged individuals with type 2 diabetes (T2D). This was accompanied by greater near-infrared spectroscopy-derived muscle deoxygenation (i.e., deoxygenated hemoglobin and myoglobin concentration, [HHb+Mb]) responses and a reduced Δ[HHb+Mb]-to-ΔV̇o2 ratio. This suggests that the PE-induced acceleration in oxidative metabolism in T2D is a result of greater O2 extraction and better matching between O2 delivery and utilization.


2020 ◽  
Vol 128 (5) ◽  
pp. 1299-1309
Author(s):  
Richie P. Goulding ◽  
Denise M. Roche ◽  
Sam N. Scott ◽  
Shunsaku Koga ◽  
Philip J. Weston ◽  
...  

Patients with type 1 diabetes demonstrated slower oxygen uptake (V̇o2) kinetics compared with healthy control subjects. Furthermore, a prior bout of high-intensity exercise speeded V̇o2 kinetics and increased critical power in people with type 1 diabetes. Prior exercise speeded muscle deoxygenation kinetics, indicating that V̇o2 kinetics in type 1 diabetes are limited primarily by oxygen extraction and/or intracellular factors. These findings highlight the potential for interventions that decrease metabolic inertia for enhancing exercise tolerance in this condition.


Sign in / Sign up

Export Citation Format

Share Document