Role of components of the phagocytic NADPH oxidase in oxygen sensing

2002 ◽  
Vol 93 (4) ◽  
pp. 1357-1364 ◽  
Author(s):  
K. A. Sanders ◽  
K. M. Sundar ◽  
L. He ◽  
B. Dinger ◽  
S. Fidone ◽  
...  

It has been hypothesized that O2sensing in type I cells of the carotid body and erythropoietin (EPO)-producing cells of the kidney involves protein components identical to the NADPH oxidase system responsible for the respiratory burst of phagocytes. In the present study, we evaluated O2sensing in mice with null mutant genotypes for two components of the phagocytic oxidase. Whole body plethysmography was used to study unanesthetized, unrestrained mice. When exposed to an acute hypoxic stimulus, gp91phox-null mutant and wild-type mice increased their minute ventilation by similar amounts. In contrast, p47phox-null mutant mice demonstrated increases in minute ventilation in response to hypoxia that exceeded that of their wild-type counterparts: 98.0 ± 18.0 vs. 20.0 ± 13.0% ( n = 11, P = 0.003). In vitro recordings of carotid sinus nerve (CSN) activity demonstrated that resting (basal) neural activity was marginally elevated in p47phox-null mutant mice. With hypoxic challenge, mean CSN discharge was 1.5-fold greater in p47phox-null mutant than in wild-type mice: 109.61 ± 13.29 vs. 72.54 ± 7.65 impulses/s ( n = 8 and 7, respectively, P = 0.026). Consequently, the hypoxia-evoked CSN discharge (stimulus-basal) was ∼58% larger in p47phox-null mutant mice. Quantities of EPO mRNA in kidney were similar in gp91phox- and p47phox-null mutant mice and their respective wild-type controls exposed to hypobaric hypoxia for 72 h. These findings confirm the previous observation that absence of the gp91phoxcomponent of the phagocytic NADPH oxidase does not alter the O2-sensing mechanism of the carotid body. However, absence of the p47phoxcomponent significantly potentiates ventilatory and chemoreceptor responses to hypoxia. O2sensing in EPO-producing cells of the kidney appears to be independent of the gp91phoxand p47phoxcomponents of the phagocytic NADPH oxidase.

2003 ◽  
Vol 23 (22) ◽  
pp. 8233-8245 ◽  
Author(s):  
Natalia Ninkina ◽  
Katerina Papachroni ◽  
Darren C. Robertson ◽  
Oliver Schmidt ◽  
Liz Delaney ◽  
...  

ABSTRACT Homologous recombination in ES cells was employed to generate mice with targeted deletion of the first three exons of the γ-synuclein gene. Complete inactivation of gene expression in null mutant mice was confirmed on the mRNA and protein levels. Null mutant mice are viable, are fertile, and do not display evident phenotypical abnormalities. The effects of γ-synuclein deficiency on motor and peripheral sensory neurons were studied by various methods in vivo and in vitro. These two types of neurons were selected because they both express high levels of γ-synuclein from the early stages of mouse embryonic development but later in the development they display different patterns of intracellular compartmentalization of the protein. We found no difference in the number of neurons between wild-type and null mutant animals in several brain stem motor nuclei, in lumbar dorsal root ganglia, and in the trigeminal ganglion. The survival of γ-synuclein-deficient trigeminal neurons in various culture conditions was not different from that of wild-type neurons. There was no difference in the numbers of myelinated and nonmyelinated fibers in the saphenous nerves of these animals, and sensory reflex thresholds were also intact in γ-synuclein null mutant mice. Nerve injury led to similar changes in sensory function in wild-type and mutant mice. Taken together, our data suggest that like α-synuclein, γ-synuclein is dispensable for the development and function of the nervous system.


2002 ◽  
Vol 282 (1) ◽  
pp. C27-C33 ◽  
Author(s):  
L. He ◽  
J. Chen ◽  
B. Dinger ◽  
K. Sanders ◽  
K. Sundar ◽  
...  

Various heme-containing proteins have been proposed as primary molecular O2 sensors for hypoxia-sensitive type I cells in the mammalian carotid body. One set of data in particular supports the involvement of a cytochrome b NADPH oxidase that is commonly found in neutrophils. Subunits of this enzyme have been immunocytochemically localized in type I cells, and diphenyleneiodonium, an inhibitor of the oxidase, increases carotid body chemoreceptor activity. The present study evaluated immunocytochemical and functional properties of carotid bodies from normal mice and from mice with a disrupted gp91 phagocytic oxidase (gp91 phox ) DNA sequence gene knockout (KO), a gene that codes for a subunit of the neutrophilic form of NADPH oxidase. Immunostaining for tyrosine hydroxylase, a signature marker antigen for type I cells, was found in groups or lobules of cells displaying morphological features typical of the O2-sensitive cells in other species, and the incidence of tyrosine hydroxylase-immunopositive cells was similar in carotid bodies from both strains of mice. Studies of whole cell K+currents also revealed identical current-voltage relationships and current depression by hypoxia in type I cells dissociated from normal vs. KO animals. Likewise, hypoxia-evoked increases in intracellular Ca2+ concentration were not significantly different for normal and KO type I cells. The whole organ response to hypoxia was evaluated in recordings of carotid sinus nerve activity in vitro. In these experiments, responses elicited by hypoxia and by the classic chemoreceptor stimulant nicotine were also indistinguishable in normal vs. KO preparations. Our data demonstrate that carotid body function remains intact after sequence disruption of the gp91 phox gene. These findings are not in accord with the hypothesis that the phagocytic form of NADPH oxidase acts as a primary O2 sensor in arterial chemoreception.


2019 ◽  
Vol 317 (1) ◽  
pp. R190-R202 ◽  
Author(s):  
Charoula Eleni Giannakopoulou ◽  
Adamantia Sotiriou ◽  
Maria Dettoraki ◽  
Michael Yang ◽  
Fotis Perlikos ◽  
...  

Proinflammatory cytokines like interleukin-1β (IL-1β) affect the control of breathing. Our aim is to determine the effect of the anti-inflammatory cytokine IL-10 οn the control of breathing. IL-10 knockout mice (IL-10−/−, n = 10) and wild-type mice (IL-10+/+, n = 10) were exposed to the following test gases: hyperoxic hypercapnia 7% CO2-93% O2, normoxic hypercapnia 7% CO2-21% O2, hypoxic hypercapnia 7% CO2-10% O2, and hypoxic normocapnia 3% CO2-10% O2. The ventilatory function was assessed using whole body plethysmography. Recombinant mouse IL-10 (rIL-10; 10 μg/kg) was administered intraperitoneally to wild-type mice ( n = 10) 30 min before the onset of gas challenge. IL-10 was administered in neonatal medullary slices (10–30 ng/ml, n = 8). We found that IL-10−/−mice exhibited consistently increased frequency and reduced tidal volume compared with IL-10+/+mice during room air breathing and in all test gases (by 23.62 to 33.2%, P < 0.05 and −36.23 to −41.69%, P < 0.05, respectively). In all inspired gases, the minute ventilation of IL-10−/−mice was lower than IL-10+/+(by −15.67 to −22.74%, P < 0.05). The rapid shallow breathing index was higher in IL-10−/−mice compared with IL-10+/+mice in all inspired gases (by 50.25 to 57.5%, P < 0.05). The intraperitoneal injection of rIL-10 caused reduction of the respiratory rate and augmentation of the tidal volume in room air and also in all inspired gases (by −12.22 to −29.53 and 32.18 to 45.11%, P < 0.05, respectively). IL-10 administration in neonatal rat ( n = 8) in vitro rhythmically active medullary slice preparations did not affect either rhythmicity or peak amplitude of hypoglossal nerve discharge. In conclusion, IL-10 may induce a slower and deeper pattern of breathing.


2003 ◽  
Vol 285 (4) ◽  
pp. R747-R753 ◽  
Author(s):  
Masahiko Izumizaki ◽  
Masakatsu Tamaki ◽  
Yo-ichi Suzuki ◽  
Michiko Iwase ◽  
Takuji Shirasawa ◽  
...  

The purpose of this study was to test whether chronically enhanced O2 delivery to tissues, without arterial hyperoxia, can change acute ventilatory responses to hypercapnia and hypoxia. The effects of decreased hemoglobin (Hb)-O2 affinity on ventilatory responses during hypercapnia (0, 5, 7, and 9% CO2 in O2) and hypoxia (10 and 15% O2 in N2) were assessed in mutant mice expressing Hb Presbyterian (mutation in the β-globin gene, β108 Asn → Lys). O2 consumption during normoxia, measured via open-circuit methods, was significantly higher in the mutant mice than in wild-type mice. Respiratory measurements were conducted with a whole body, unrestrained, single-chamber plethysmograph under conscious conditions. During hypercapnia, there was no difference between the slopes of the hypercapnic ventilatory responses, whereas minute ventilation at the same levels of arterial PCO2 was lower in the Presbyterian mice than in the wild-type mice. During both hypoxic exposures, ventilatory responses were blunted in the mutant mice compared with responses in the wild-type mice. The effects of brief hyperoxia exposure (100% O2) after 10% hypoxia on ventilation were examined in anesthetized, spontaneously breathing mice with a double-chamber plethysmograph. No significant difference was found in ventilatory responses to brief hypoxia between both groups of mice, indicating possible involvement of central mechanisms in blunted ventilatory responses to hypoxia in Presbyterian mice. We conclude that chronically enhanced O2 delivery to peripheral tissues can reduce ventilation during acute hypercapnic and hypoxic exposures.


Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 835-845 ◽  
Author(s):  
Wendy V. Ingman ◽  
Rebecca L. Robker ◽  
Karen Woittiez ◽  
Sarah A. Robertson

TGFβ1 is implicated in regulation of ovarian function and the events of early pregnancy. We have investigated the effect of null mutation in the Tgfβ1 gene on reproductive function in female mice. The reproductive capacity of TGFβ1 null mutant females was severely impaired, leading to almost complete infertility. Onset of sexual maturity was delayed, after which ovarian function was disrupted, with extended ovarian cycles, irregular ovulation, and a 40% reduction in oocytes ovulated. Serum FSH and estrogen content were normal, but TGFβ1 null mutant mice failed to display the characteristic proestrus surge in circulating LH. Ovarian hyperstimulation with exogenous gonadotropins elicited normal ovulation rates in TGFβ1 null mutant mice. After mating with wild-type stud males, serum progesterone content was reduced by 75% associated with altered ovarian expression of mRNAs encoding steroidogenic enzymes 3β-hydroxysteroid dehydrogenase-1 and P450 17 α-hydroxylase/C17–20-lyase. Embryos recovered from TGFβ1 null mutant females were developmentally arrested in the morula stage and rarely progressed to blastocysts. Attempts to rescue embryos by exogenous progesterone administration and in vitro culture were unsuccessful, and in vitro fertilization and culture experiments demonstrated that impaired development is unlikely to result from lack of maternal tract TGFβ1. We conclude that embryo arrest is due to developmental incompetence in oocytes developed in a TGFβ1-deficient follicular environment. This study demonstrates that TGFβ1 is a critical determinant of normal ovarian function, operating through regulation of LH activity and generation of oocytes competent for embryonic development and successful initiation of pregnancy.


1999 ◽  
Vol 91 (5) ◽  
pp. 1329-1329 ◽  
Author(s):  
Daisy T. Joo ◽  
Zhigang Xiong ◽  
John F. MacDonald ◽  
Zhengping Jia ◽  
John Roder ◽  
...  

Background Barbiturates enhance gamma-aminobutyric acid type A (GABA(A)) receptor function and also inhibit the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptor. The relative contribution of these actions to the behavioral properties of barbiturates is not certain. Because AMPA receptor complexes that lack the GluR2 subunit are relatively insensitive to pentobarbital inhibition, GluR2 null mutant mice provide a novel tool to investigate the importance of AMPA receptor inhibition to the anesthetic effects of barbiturates. Methods GluR2 null allele (-/-), heterozygous (+/-), and wild-type (+/+) mice were injected with pentobarbital (30 and 35 mg/kg intraperitoneally). Sensitivity to anesthetics was assessed by measuring the latency to loss of righting reflex, sleep time, and the loss of corneal, pineal, and toe-pinch withdrawal reflexes. In addition, patch-clamp recordings of acutely dissociated CA1 hippocampal pyramidal neurons from (-/-) and (+/+) mice were undertaken to investigate the effects of barbiturates on kainate-activated AMPA receptors and GABA-activated GABA(A) receptors. Results Behavioral tests indicate that sensitivity to pentobarbital was increased in (-/-) mice. In contrast, AMPA receptors from (-/-) neurons were less sensitive to inhibition by pentobarbital (concentrations that produced 50% of the maximal inhibition [IC50], 301 vs. 51 microM), thiopental (IC50, 153 vs. 34 microM), and phenobarbital (IC50, 930 vs. 205 microM) compared with wild-type controls, respectively. In addition, the potency of kainate was greater in (-/-) neurons, whereas no differences were observed for the potentiation of GABA(A) receptors by pentobarbital. Conclusions The GluR2 null mutant mice were more sensitive to pentobarbital anesthesia despite a reduced sensitivity of GluR2-deficient AMPA receptors to barbiturate blockade. Our results indicate that the inhibition of AMPA receptors does not correlate with the anesthetic effects of barbiturates in this animal model. We postulate that the increase in the sensitivity to anesthetics results from a global suppression of excitatory neurotransmission in GluR2-deficient mice.


Endocrinology ◽  
2000 ◽  
Vol 141 (7) ◽  
pp. 2698-2702 ◽  
Author(s):  
Angelo Contarino ◽  
Françoise Dellu ◽  
George F. Koob ◽  
George W. Smith ◽  
Kuofen Lee ◽  
...  

ABSTRACT Corticotropin-releasing factor (CRF) systems are involved in locomotor and feeding behaviors. Two distinct CRF receptor subtypes, CRFR1 and CRFR2, are thought to mediate CRF actions in the central nervous system. However, the role for each receptor in locomotor activity and feeding remains to be determined. Using CRFR1 null mutant mice, the present study examined the functional significance of this receptor in ambulation and feeding. CRF treatment of wild-type mice resulted in increased levels of locomotion whereas no change was observed in CRFR1-deficient mice as compared to vehicle-treated mutant mice. In contrast, CRF decreased food-water intake in both wild type and CRFR1-deficient mice equally. These results support an important role for CRFR1 in mediating CRF-induced locomotor activation, whereas other receptor subtypes, likely CRFR2, may mediate the appetite-suppressing effects of CRF-like peptides.


Sign in / Sign up

Export Citation Format

Share Document