Acetaminophen does not affect 24-h body temperature or sleep in the luteal phase of the menstrual cycle

2002 ◽  
Vol 92 (4) ◽  
pp. 1684-1691 ◽  
Author(s):  
Fiona C. Baker ◽  
Helen S. Driver ◽  
Janice Paiker ◽  
Geoffrey G. Rogers ◽  
Duncan Mitchell

Body temperature and sleep change in association with increased progesterone in the luteal phase of the menstrual cycle in young women. The mechanism by which progesterone raises body temperature is not known but may involve prostaglandins, inducing a thermoregulatory adjustment similar to that of fever. Prostaglandins also are involved in sleep regulation and potentially could mediate changes in sleep during the menstrual cycle. We investigated the possible role of central prostaglandins in mediating menstrual-associated 24-h temperature and sleep changes by inhibiting prostaglandin synthesis with a therapeutic dose of the centrally acting cyclooxygenase inhibitor acetaminophen in the luteal and follicular phases of the menstrual cycle in young women. Body temperature was raised, and nocturnal amplitude was blunted, in the luteal phase compared with the follicular phase. Acetaminophen had no effect on the body temperature profile in either menstrual cycle phase. Prostaglandins, therefore, are unlikely to mediate the upward shift of body temperature in the luteal phase. Sleep changed during the menstrual cycle: on the placebo night in the luteal phase the women had less rapid eye movement sleep and more slow-wave sleep than in the follicular phase. Acetaminophen did not alter sleep architecture or subjective sleep quality. Prostaglandin inhibition with acetaminophen, therefore, had no effect on the increase in body temperature or on sleep in the midluteal phase of the menstrual cycle in young women, making it unlikely that central prostaglandin synthesis underlies these luteal events.

2012 ◽  
Vol 113 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Keiji Hayashi ◽  
Takayo Kawashima ◽  
Yuichi Suzuki

To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ∼60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia.


Author(s):  
Shehnaz Shaikh

Introduction: Menstrual cycle or menstruation involved discharge of sanguinous fluid and a sloughing of uterine wall. In women menstruation occurs at regular intervals on an average of 28 days, although most women gave a history of regular intervals of 28 to 30 days. About 10% -15% of women showed cycle at the precise 28 ± 2 days intervals when menstrual calendar was utilized. Normally in young women in different phases of ovarian cycles the plasma levels of estrogen vary. Ovulation occurs in the first 12-13th day of menstrual cycle, which is termed estrogen surge and second occurs in mid-luteal phase. During mid cycle or follicular phase of menstrual cycle the plasma concentration of progesterone is very low about 0.9 ng/mL. its level starts rising owing to secretion from the granulose cells. During luteal phase progesterone level reaches its peak value of 18 ng/mL and its level fall to a minimum value toward the end of the cycle. Estrogen affects local and systemic vasodilation. The menstrual cycle envelops two fundamental stages, the follicular stage (FP) and the luteal stage (LP). The follicular stage can part advance into two substages; the early FP, which is characterised with moo concentrations of both the key hormones estrogen and progesterone; and the mid FP where estrogen is tall autonomously from progesterone. The LP is epitomized by tall concentration of both estrogen and progesterone. These two fundamental stages are isolated by a soak surge in luteinizing hormone activating ovulation. These recurrent changes are said to be frequency unsurprising while long time. Aim: The main aim of this study is to evaluate the Cardiorespiratory functions changes during different Phases of Menstrual Cycle.   Material and methods: In this study, 20 with normal weight, 20 with obese and 20 with overage were included and taken them as a sample size. In this study all the young women those were recruited as a sample size are unmarried, undergraduate female student with the between the age group of 18-22years, having regular 28+6 days menstrual cycle for at least last 6months prior to this study. For the collection of data all the participants were instructed to attend the physiology lab department during each of three different phases. Day-2 during menstrual phase, Day-7, during follicular phase and Day-22 during luteal phase and the following parameters were recorded as Anthropometric measurements, measuring of pulse rate and blood pressure and cardiac efficiency test. Result: In general, work out proficiency changed essentially amid the distinctive stages of the menstrual cycle with the most elevated amid luteal stage and least amid menstrualo stage. There was no critical contrast in impact test amid menstrual stage, follicular stage and luteal stage of menstrual cycle among three bunches of people. Conclusion: We have watched noteworthy increment in cardiac and respiratory proficiency within the luteal stage of the menstrual cycle in ordinary weight people. Lower wellness levels were watched in overweight and stout females. In this manner hone of customary work out and admissions of solid slim down which offer assistance in lessening the weight and in turn the BMI will offer assistance in improving the physical wellness of the people. Keywords: Cardiorespiratory, Menstrual cycle, expiratory blast test


2021 ◽  
Vol 3 ◽  
Author(s):  
Dan Martin ◽  
Kate Timmins ◽  
Charlotte Cowie ◽  
Jon Alty ◽  
Ritan Mehta ◽  
...  

Objectives: This study aimed to assess how menstrual cycle phase and extended menstrual cycle length influence the incidence of injuries in international footballers.Methods: Over a 4-year period, injuries from England international footballers at training camps or matches were recorded, alongside self-reported information on menstrual cycle characteristics at the point of injury. Injuries in eumenorrheic players were categorized into early follicular, late follicular, or luteal phase. Frequencies were also compared between injuries recorded during the typical cycle and those that occurred after the cycle would be expected to have finished. Injury incidence rates (per 1,000 person days) and injury incidence rate ratios were calculated for each phase for all injuries and injuries stratified by type.Results: One hundred fifty-six injuries from 113 players were eligible for analysis. Injury incidence rates per 1,000 person-days were 31.9 in the follicular, 46.8 in the late follicular, and 35.4 in the luteal phase, resulting in injury incidence rate ratios of 1.47 (Late follicular:Follicular), 1.11 (Luteal:Follicular), and 0.76 (Luteal:Late follicular). Injury incident rate ratios showed that muscle and tendon injury rates were 88% greater in the late follicular phase compared to the follicular phase, with muscle rupture/tear/strain/cramps and tendon injuries/ruptures occurring over twice as often during the late follicular phase compared to other phases 20% of injuries were reported as occurring when athletes were “overdue” menses.Conclusion: Muscle and tendon injuries occurred almost twice as often in the late follicular phase compared to the early follicular or luteal phase. Injury risk may be elevated in typically eumenorrheic women in the days after their next menstruation was expected to start.


2009 ◽  
Vol 27 (22) ◽  
pp. 3620-3626 ◽  
Author(s):  
Clive S. Grant ◽  
James N. Ingle ◽  
Vera J. Suman ◽  
Daniel A. Dumesic ◽  
D. Lawrence Wickerham ◽  
...  

Purpose For nearly two decades, multiple retrospective reports, small prospective studies, and meta-analyses have arrived at conflicting results regarding the value of timing surgical intervention for breast cancer on the basis of menstrual cycle phase. We present the results of a multi–cooperative group, prospective, observational trial of menstrual cycle phase and outcome after breast cancer surgery, led by the North Central Cancer Treatment Group (NCCTG) in collaboration with the National Surgical Adjuvant Breast and Bowel Project (NSABP) and the International Breast Cancer Study Group (IBCSG). Patients and Methods Premenopausal women age 18 to 55 years, who were interviewed for menstrual history and who were surgically treated for stages I to II breast cancer, had serum drawn within 1 day of surgery for estradiol, progesterone, and luteinizing hormone levels. Menstrual history and hormone levels were used to determine menstrual phase: luteal, follicular, and other. Disease-free survival (DFS) and overall survival (OS) rates were determined by Kaplan-Meier method and were compared by using the log-rank test and Cox proportional hazard modeling. Results Of 1,118 women initially enrolled, 834 women comprised the study cohort: 230 (28%) in luteal phase; 363 (44%) in follicular phase; and 241 grouped as other. During a median follow-up of 6.6 years, and in analysis that accounted for nodal disease, estrogen receptor status, adjuvant radiation therapy or chemotherapy, neither DFS nor OS differed with respect to menstrual phase. The 5-year DFS rates were 82.7%, 82.1%, and 79.2% for follicular, luteal, or other phases, respectively. Corresponding OS survival rates were 91.9%, 92.2%, and 91.8%, respectively. Conclusion When menstrual cycle phases were strictly defined, neither DFS nor OS differed between women who underwent surgery during the follicular phase versus the luteal phase. Nearly 30% of the patients did not meet criteria for either follicular- or luteal-phase categories.


2010 ◽  
Vol 162 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Pirjo Valtonen ◽  
Kari Punnonen ◽  
Heli Saarelainen ◽  
Nonna Heiskanen ◽  
Olli T Raitakari ◽  
...  

ObjectiveThe aim of this study was to evaluate changes in the nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) levels during different menstrual cycle phases in young adult women with or without oral contraceptive (OC) use.Design and methodsThe subjects (n=1079) originated from a large population-based, prospective cohort study conducted in Finland. Plasma ADMA, symmetric dimethylarginine (SDMA), l-arginine, C-reactive protein, creatinine, and brachial artery flow-mediated dilatation (FMD) were measured. The use of OCs and menstrual cycle phase were determined from a questionnaire.ResultsIn non-OC users, ADMA (P=0.017), l-arginine (P=0.002), and ADMA/SDMA ratio (P<0.001) were significantly lower in the luteal phase than in the follicular phase of the menstrual cycle. Non-OC users also had significantly higher ADMA and SDMA concentrations (P<0.001) and lower l-arginine concentrations (P<0.001) compared to OC users of estrogen-containing pills. Progestin-only contraceptive pills (POPs) did not lower the ADMA level, but maintained it at the same level as in non-OC users. In OC users, there were no significant differences found in ADMA, FMD, or FMD% across menstrual cycle, whereas brachial artery diameter was significantly more decreased in the luteal phase (P=0.013) than in the follicular phase.ConclusionWe observed that the circulating ADMA concentration varies across the menstrual cycle in young women not using OCs, and women on OCs displayed significantly lower circulating ADMA concentrations than non-OC users, though this was not the case with POP contraception.


2017 ◽  
Author(s):  
R.L. Sumner ◽  
R.L. McMilllan ◽  
A. D. Shaw ◽  
K.D. Singh ◽  
F. Sundram ◽  
...  

AbstractFluctuations in gonadal hormones over the course of the menstrual cycle are known to cause functional brain changes and are thought to modulate changes in the balance of cortical excitation and inhibition. Animal research has shown this occurs primarily via the major metabolite of progesterone, allopregnanolone, and its action as a positive allosteric modulator of the GABAA receptor. Our study used EEG to record gamma oscillations induced in the visual cortex using stationary and moving gratings. Recordings took place during twenty females’ mid-luteal phase when progesterone and oestradiol are highest, and early follicular phase when progesterone and oestradiol are lowest. Significantly higher (~5 Hz) gamma frequency was recorded during the luteal compared to the follicular phase for both stimuli types. Using dynamic causal modelling these changes were linked to stronger self-inhibition of superficial pyramidal cells in the luteal compared to the follicular phase. In addition the connection from inhibitory interneurons to deep pyramidal cells was found to be stronger in the follicular compared to the luteal phase. These findings show that complex functional changes in synaptic microcircuitry occur across the menstrual cycle and that menstrual cycle phase should be taken into consideration when including female participants in research into gamma-band oscillations.


2013 ◽  
Vol 12 (2) ◽  
pp. 257-265
Author(s):  
K. B. Muravlyova ◽  
O. I. Kuzminova ◽  
S. I. Petrova ◽  
M. V. Skoraya ◽  
O. M. Bazanova

With the aim to identify the effects of menstrual cycle phase on the alpha EEG characteristics the 78 women aged 18–27 years were studied in a within-subject design Half the subjects began investigation at their follicular phase and half at their luteal phase (LP). The alpha peak frequency, alpha band width and power inalpha-2 range are highest, but power in alpha 1 and activation are lowest in LP that is associated with the highest saliva progesterone level.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ricardo Mondragón-Ceballos ◽  
Mónica Dafne García Granados ◽  
Ana Lilia Cerda-Molina ◽  
Roberto Chavira-Ramírez ◽  
Leonor Estela Hernández-López

We studied if testosterone and estradiol concentrations are associated with specific female waist-to-hip ratios (WHRs) and body mass indices (BMIs). Participants were 187 young women from which waist, hips, weight, and height were measured. In addition, participants informed on which day of their menstrual cycle they were and provided a 6 mL saliva sample. Ninety-one of them were in the follicular phase and 96 in the luteal phase. Only in the fertile phase of the menstrual cycle we found a significant interaction between testosterone and estradiol affecting WHR (b±s.e.=-0.000003±0.000001; t94=-2.12, adjusted R2=-0.008, P=0.03). Women with the highest levels of both hormones had the lowest WHRs, while women with low estradiol and high testosterone showed the highest WHRs. BMI significantly increased as testosterone increased in female in their nonfertile days.


2013 ◽  
Vol 12 (2) ◽  
pp. 247-256 ◽  
Author(s):  
K. B. Muravlyova ◽  
O. I. Kuzminova ◽  
S. E. Petrova ◽  
M. V. Skoraya ◽  
O. M. Bazanova

With the aim to identify the effects of menstrual cycle phase on the cognitive and psycho-emotional characteristics in 78 women aged 18–27 years were studied in a within-subject design Half the subjects began during their follicular phase and half began during their luteal phase (LP). The level of psycho-emotional tension was lowest, but cognitive performance efficiency is a highest in LP that is associated with the highest saliva progesterone level.


2018 ◽  
Vol 2 (77) ◽  
Author(s):  
Laura Daniusevičiūtė ◽  
Marius Brazaitis ◽  
Albertas Skurvydas ◽  
Saulė Sipavičienė ◽  
Vitas Linonis ◽  
...  

The aim of our study was to establish the dependence of changes in the concentration of creatine kinase, body composition and lipoprotein on the follicular phase and ovulation. The subjects were healthy and physically active women (n = 9) with normal menstrual cycle, whose age was 19—23 years, body weight — 58.2 ± 6.1 kg, height — 168.4 ± 5.6 cm. All the participants had not used oral contraceptives for 6 months and had regular menstrual cycles. Ethical approval was obtained from Kaunas Regional Biomedical Research Ethics Committee (Report Number BE-2-24). Each subject measured her basal body temperature every morning 3 months before the experiment. The basal body temperature increased approximately by 0.3 °C after ovulation, which is sustained throughout the luteal phase. By the basal body temperature we estimated the approximate day of ovulation, and thus the relative length of follicular and luteal phases. We performed two experiments with each participant: in the follicular phase and ovulation. The days of experiment were chosen considering the duration of the menstrual cycle and the ovulation day of each participant. At the beginning of every experiment the body composition values: weight, BMI, body fat mass (%), body fat mass (kg), muscle mass (kg), water amount (kg) were estimated. The samples of 5 ml and 2 ml venum blood were taken toestablish the amount of estradio17β-estradiol, serum total cholesterol, high density lipoprotein cholesterol, triglyceride and creatine kinase concentration. Creatine kinase concentration was measured 24, 48, 72 hours after the load (100 jumps on the vertical jump force plate from a 75 cm stage). After 10—15 min of not intensive warming-up (slow pedaling veloergometer, heart rate 120—130 b / min) 100 jumps on the vertical jump force plate from a 75 cm stage were performed, with the knee joints flexed up to the angle of 90° (hands on loin). Hormonal analysis confirmed that the subjects were in the correct estrogen status, but no significant change was observed in the body composition and triglyceride values over the menstrual cycle. High density lipoprotein cholesterol and serum total cholesterol values significantly differed in ovulation compared to the values in the follicular phase. Due to the small sample size CK concentration did not significantly differ during the menstrual cycle, but the amount of CK concentration was lager in the follicular phase than in ovulation.Keywords: lipoprotein contentration, creatin kinase, body composition, follicular phase, ovulation.


Sign in / Sign up

Export Citation Format

Share Document