Instantaneous quantification of skeletal muscle activation, power production, and fatigue during cycle ergometry

2015 ◽  
Vol 118 (5) ◽  
pp. 646-654 ◽  
Author(s):  
A. C. Coelho ◽  
D. T. Cannon ◽  
R. Cao ◽  
J. Porszasz ◽  
R. Casaburi ◽  
...  

A rapid switch from hyperbolic to isokinetic cycling allows the velocity-specific decline in maximal power to be measured, i.e., fatigue. We reasoned that, should the baseline relationship between isokinetic power (Piso) and electromyography (EMG) be reproducible, then contributions to fatigue may be isolated from 1) the decline in muscle activation (muscle activation fatigue); and 2) the decline in Piso at a given activation (muscle fatigue). We hypothesized that the EMG-Piso relationship is linear, velocity dependent, and reliable for instantaneous fatigue assessment at intolerance during and following whole body exercise. Healthy participants ( n = 13) completed short (5 s) variable-effort isokinetic bouts at 50, 70, and 100 rpm to characterize baseline EMG-Piso. Repeated ramp incremental exercise tests were terminated with maximal isokinetic cycling (5 s) at 70 rpm. Individual baseline EMG-Piso relationships were linear ( r2 = 0.95 ± 0.04) and velocity dependent (analysis of covariance). Piso at intolerance (two legs, 335 ± 88 W) was ∼45% less than baseline [630 ± 156 W, confidence interval of the difference (CIDifference) 211, 380 W, P < 0.05]. Following intolerance, Piso recovered rapidly ( F = 44.1; P < 0.05; η2 = 0.79): power was reduced ( P < 0.05) vs. baseline only at 0-min (CIDifference 80, 201 W) and 1-min recovery (CIDifference 13, 80 W). Activation fatigue and muscle fatigue (one leg) were 97 ± 55 and 60 ± 50 W, respectively. Mean bias ± limits of agreement for reproducibility were as follows: baseline Piso 1 ± 30 W; Piso at 0-min recovery 3 ± 35 W; and EMG at Piso 3 ± 14%. EMG power is linear, velocity dependent, and reproducible. Deviation from this relationship at the limit of tolerance can quantify the “activation” and “muscle” related components of fatigue during cycling.

2019 ◽  
Vol 317 (6) ◽  
pp. R840-R851 ◽  
Author(s):  
Danilo Iannetta ◽  
Louis Passfield ◽  
Ahmad Qahtani ◽  
Martin J. MacInnis ◽  
Juan M. Murias

It is typically assumed that in the context of double-leg cycling, dominant (DOMLEG) and nondominant legs (NDOMLEG) have similar aerobic capacity and both contribute equally to the whole body physiological responses. However, there is a paucity of studies that have systematically investigated maximal and submaximal aerobic performance and characterized the profiles of local muscle deoxygenation in relation to leg dominance. Using counterweighted single-leg cycling, this study explored whether peak O2 consumption (V̇o2peak), maximal lactate steady-state (MLSSp), and profiles of local deoxygenation [HHb] would be different in the DOMLEG compared with the NDOMLEG. Twelve participants performed a series of double-leg and counterweighted single-leg DOMLEG and NDOMLEG ramp-exercise tests and 30-min constant-load trials. V̇o2peak was greater in the DOMLEG than in the NDOMLEG (2.87 ± 0.42 vs. 2.70 ± 0.39 L/min, P < 0.05). The difference in V̇o2peak persisted even after accounting for lean mass ( P < 0.05). Similarly, MLSSp was greater in the DOMLEG than in the NDOMLEG (118 ± 31 vs. 109 ± 31 W; P < 0.05). Furthermore, the amplitude of the [HHb] signal during ramp exercise was larger in the DOMLEG than in the NDOMLEG during both double-leg (26.0 ± 8.4 vs. 20.2 ± 8.8 µM, P < 0.05) and counterweighted single-leg cycling (18.5 ± 7.9 vs. 14.9 ± 7.5 µM, P < 0.05). Additionally, the amplitudes of the [HHb] signal were highly to moderately correlated with the mode-specific V̇o2peak values (ranging from 0.91 to 0.54). These findings showed in a group of young men that maximal and submaximal aerobic capacities were greater in the DOMLEG than in the NDOMLEG and that superior peripheral adaptations of the DOMLEG may underpin these differences.


2021 ◽  
pp. 1-13
Author(s):  
Li-Xin Guo ◽  
Rui-Chun Dong ◽  
Sheng Yuan ◽  
Qing-Zhi Feng ◽  
Wei Fan

BACKGROUND: In order to alleviate muscle fatigue and improve ride comfort, many published studies aimed to improve the seat environment or optimize seating posture. However, the effect of lumbar support on the lumbar muscle of seated subjects under whole body vibration is still unclear. OBJECTIVE: This study aimed to investigate the effect of lumbar support magnitude of the seat on lumbar muscle fatigue relief under whole body vibration. METHODS: Twenty healthy volunteers without low back pain participated in the experiment. By measuring surface electromyographic signals of erector spinae muscles under vibration or non-vibration for 30 minutes, the effect of different lumbar support conditions on muscle fatigue was analyzed. The magnitude of lumbar support d is assigned as d1= 0 mm, d2= 20 mm and d3= 40 mm for no support, small support and large support, respectively. RESULTS: The results showed that lumbar muscle activation levels vary under different support conditions. For the small support case (d2= 20 mm), the muscle activation level under vibration and no-vibration was the minimum, 42.3% and 77.7% of that under no support (d1= 0 mm). For all support conditions, the muscle activation level under vibration is higher than that under no-vibration. CONCLUSIONS: The results indicate that the small support yields the minimum muscle contraction (low muscle contraction intensity) under vibration, which is more helpful for relieving lumbar muscle fatigue than no support or large support cases. Therefore, an appropriate lumbar support of seats is necessary for alleviating lumbar muscle fatigue.


2016 ◽  
Vol 121 (6) ◽  
pp. 1365-1373 ◽  
Author(s):  
Daniel T. Cannon ◽  
Ana Claudia Coelho ◽  
Robert Cao ◽  
Andrew Cheng ◽  
Janos Porszasz ◽  
...  

Muscle fatigue (a reduced power for a given activation) is common following exercise in chronic obstructive pulmonary disease (COPD). Whether muscle fatigue, and reduced maximal voluntary locomotor power, are sufficient to limit whole body exercise in COPD is unknown. We hypothesized in COPD: 1) exercise is terminated with a locomotor muscle power reserve; 2) reduction in maximal locomotor power is related to ventilatory limitation; and 3) muscle fatigue at intolerance is less than age-matched controls. We used a rapid switch from hyperbolic to isokinetic cycling to measure the decline in peak isokinetic power at the limit of incremental exercise (“performance fatigue”) in 13 COPD patients (FEV1 49 ± 17%pred) and 12 controls. By establishing the baseline relationship between muscle activity and isokinetic power, we apportioned performance fatigue into the reduction in muscle activation and muscle fatigue. Peak isokinetic power at intolerance was ~130% of peak incremental power in controls (274 ± 73 vs. 212 ± 84 W, P < 0.05), but ~260% in COPD patients (187 ± 141 vs. 72 ± 34 W, P < 0.05), greater than controls ( P < 0.05). Muscle fatigue as a fraction of baseline peak isokinetic power was not different in COPD patients vs. controls (0.11 ± 0.20 vs. 0.19 ± 0.11). Baseline to intolerance, the median frequency of maximal isokinetic muscle activity, was unchanged in COPD patients but reduced in controls (+4.3 ± 11.6 vs. −5.5 ± 7.6%, P < 0.05). Performance fatigue as a fraction of peak incremental power was greater in COPD vs. controls and related to resting (FEV1/FVC) and peak exercise (V̇E/maximal voluntary ventilation) pulmonary function ( r2 = 0.47 and 0.55, P < 0.05). COPD patients are more fatigable than controls, but this fatigue is insufficient to constrain locomotor power and define exercise intolerance.


2011 ◽  
Vol 46 (6) ◽  
pp. 621-628 ◽  
Author(s):  
Brian G. Pietrosimone ◽  
Noelle M. Selkow ◽  
Christopher D. Ingersoll ◽  
Joseph M. Hart ◽  
Susan A. Saliba

Context: The ability to accurately estimate quadriceps voluntary activation is an important tool for assessing neuromuscular function after a variety of knee injuries. Different techniques have been used to assess quadriceps volitional activation, including various stimulating electrode types and electrode configurations, yet the optimal electrode types and configurations for depolarizing motor units in the attempt to assess muscle activation are unknown. Objective: To determine whether stimulating electrode type and configuration affect quadriceps central activation ratio (CAR) and percentage-of-activation measurements in healthy participants. Design: Crossover study. Setting: Research laboratory. Patients and Other Participants: Twenty participants (13 men, 7 women; age = 26 ± 5.3 years, height = 173.85 ± 7.3 cm, mass = 77.37 ± 16 kg) volunteered. Intervention(s): All participants performed 4 counter-balanced muscle activation tests incorporating 2 different electrode types (self-adhesive, carbon-impregnated) and 2 electrode configurations (vastus, rectus). Main Outcome Measure(s): Quadriceps activation was calculated with the CAR and percentage-of-activation equations, which were derived from superimposed burst and resting torque measurements. Results: No differences were found between conditions for CAR and percentage-of-activation measurements, whereas resting twitch torque was higher in the rectus configuration for both self-adhesive (216 ± 66.98 Nm) and carbon-impregnated (209.1 ± 68.22 Nm) electrodes than in the vastus configuration (209.5 ± 65.5 Nm and 204 ± 62.7 Nm, respectively) for these electrode types (F1,19 = 4.87, P = .04). In addition, resting twitch torque was greater for both electrode configurations with self-adhesive electrodes than with carbon-impregnated electrodes (F1,19 = 9.33, P = .007). Bland-Altman plots revealed acceptable mean differences for agreement between electrode type and configuration for CAR and percentage of activation, but limits of agreement were wide. Conclusions: Although these electrode configurations and types might not necessarily be able to be used interchangeably, differences in electrode type and configuration did not seem to affect CAR and percentage-of-activation outcome measures.


2013 ◽  
Vol 8 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Stephen A. Ingham ◽  
Jamie S. Pringle ◽  
Sarah L. Hardman ◽  
Barry W. Fudge ◽  
Victoria L. Richmond

Purpose:This study examined parameters derived from both an incremental step-wise and a ramp-wise graded rowing exercise test in relation to rowing performance.Methods:Discontinuous step-wise incremental rowing to exhaustion established lactate threshold (LT), maximum oxygen consumption (VO2maxSTEP), and power associated with VO2max (W VO2max). A further continuous ramp-wise test was undertaken to derive ventilatory threshold (VT), maximum oxygen consumption (VO2maxRAMP), and maximum minute power (MMW). Results were compared with maximal 2000-m ergometer time-trial power.Results:The strongest correlation with 2000-m power was observed for MMW (r = .98, P < .001), followed by W VO2max (r = .96; P < .001). The difference between MMW and W VO2max compared with the mean of MMW/W VO2max showed a widening bias with a greater difference coincident with greater power. However, this bias was reduced when expressed as a ratio term and when a baseline VO2 was accounted for. There were no differences (P = .85) between measures of VO2maxSTEP and VO2maxRAMP; rather, the measures showed strong association (r = .97, P < .001, limits of agreement = −0.43 to 0.33 L/min). The power at LT and VT did not differ (P = .6), and a significant association was observed (r = .73, P = .001, limits of agreement = −54.3 to 20.2 W, SEE = 26.1).Conclusions:This study indicates that MMW demonstrates a strong association with ergometer rowing performance and thus may have potential as an influential monitoring tool for rowing athletes.


VASA ◽  
2020 ◽  
pp. 1-6
Author(s):  
Hanji Zhang ◽  
Dexin Yin ◽  
Yue Zhao ◽  
Yezhou Li ◽  
Dejiang Yao ◽  
...  

Summary: Our meta-analysis focused on the relationship between homocysteine (Hcy) level and the incidence of aneurysms and looked at the relationship between smoking, hypertension and aneurysms. A systematic literature search of Pubmed, Web of Science, and Embase databases (up to March 31, 2020) resulted in the identification of 19 studies, including 2,629 aneurysm patients and 6,497 healthy participants. Combined analysis of the included studies showed that number of smoking, hypertension and hyperhomocysteinemia (HHcy) in aneurysm patients was higher than that in the control groups, and the total plasma Hcy level in aneurysm patients was also higher. These findings suggest that smoking, hypertension and HHcy may be risk factors for the development and progression of aneurysms. Although the heterogeneity of meta-analysis was significant, it was found that the heterogeneity might come from the difference between race and disease species through subgroup analysis. Large-scale randomized controlled studies of single species and single disease species are needed in the future to supplement the accuracy of the results.


2003 ◽  
Vol 3 (2) ◽  
pp. 99-108
Author(s):  
Kermit G. Davis ◽  
Riley E. Splittstoesser ◽  
William S. Marras

Although there have been numerous studies evaluating the difference between stooped and squat lifting styles, there remains a lack of understanding of whole body kinematics during unrestricted lifting. The current study evaluated nine males and nine females while lifting two box weights (9.1 kg, 18.2 kg) from five origins below the waist (0, 19, 38, 57, and 76 cm above the floor) and from three task asymmetries (sagittally symmetric, 45° clockwise, 45° counter-clockwise). While the lifting style was significantly influenced by the height of lift origin and to a lesser extent gender, box weight, and task asymmetry, none of the conditions resulted in pure squat or stoop lifting style. However, for lifts above knee height, the lifting style resembled more of a stoop lift while lifts originating below knee height were more of a squat lift. As the origin moved closer to the floor, participants relied more on their hips to accomplish the sagittal flexion but overall adopted a more coordinated whole-body lifting style. All together, as more sagittal flexion is required, more joints are relied upon in a more coordinated effort. The current study indicates that caution needs to be exercised when applying results of pure squat or pure stoop lifting studies to free-style (realistic) lifting.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
René F. Castien ◽  
Michel W. Coppieters ◽  
Tom S. C. Durge ◽  
Gwendolyne G. M. Scholten-Peeters

Abstract Background Pressure pain thresholds (PPTs) are commonly assessed to quantify mechanical sensitivity in various conditions, including migraine. Digital and analogue algometers are used, but the concurrent validity between these algometers is unknown. Therefore, we assessed the concurrent validity between a digital and analogue algometer to determine PPTs in healthy participants and people with migraine. Methods Twenty-six healthy participants and twenty-nine people with migraine participated in the study. PPTs were measured interictally and bilaterally at the cephalic region (temporal muscle, C1 paraspinal muscles, and trapezius muscle) and extra-cephalic region (extensor carpi radialis muscle and tibialis anterior muscle). PPTs were first determined with a digital algometer, followed by an analogue algometer. Intraclass correlation coefficients (ICC3.1) and limits of agreement were calculated to quantify concurrent validity. Results The concurrent validity between algometers in both groups was moderate to excellent (ICC3.1 ranged from 0.82 to 0.99, with 95%CI: 0.65 to 0.99). Although PPTs measured with the analogue algometer were higher at most locations in both groups (p < 0.05), the mean differences between both devices were less than 18.3 kPa. The variation in methods, such as a hand-held switch (digital algometer) versus verbal commands (analogue algometer) to indicate when the threshold was reached, may explain these differences in scores. The limits of agreement varied per location and between healthy participants and people with migraine. Conclusion The concurrent validity between the digital and analogue algometer is excellent in healthy participants and moderate in people with migraine. Both types of algometer are well-suited for research and clinical practice but are not exchangeable within a study or patient follow-up.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 191
Author(s):  
Kangho Kim ◽  
Denny Eun ◽  
Yong-Seok Jee

Background and Objectives: This study investigated the various impulse effects of whole-body electromyostimulation (WB-EMS) on psychophysiological responses and adaptations. Materials and Methods: The participants included fifty-four men between 20 and 27 years of age who practiced isometric exercises for 20 min, three days a week, for 12 weeks while wearing WB-EMS suits, which enabled the simultaneous activation of eight muscle groups with three types of impulse intensities. Participants were allocated to one of four groups: control group (CON), low-impulse-intensity group (LIG), mid-impulse-intensity group (MIG), and high-impulse-intensity group (HIG). Psychophysiological conditions were measured at week 0, week 4, week 8, and week 12. Results: Compared with the CON, (1) three psychological conditions in LIG, MIG, and HIG showed positive tendencies every four weeks, and the analysis of covariance (ANCOVA) test revealed that body image (p = 0.004), body shape (p = 0.007), and self-esteem (p = 0.001) were significantly different among the groups. (2) Body weight, fat mass, body mass index, and percent fat in the CON showed decreasing tendencies, whereas those in LIG, MIG, and HIG showed a noticeable decrease, which revealed that there were significant differences among the groups. Specifically, a higher impulse intensity resulted in a greater increase in muscle mass. (3) Although there was no interaction effect in the abdominal visceral fat area, there were significant interactions in the abdominal subcutaneous fat (ASF) and total fat (ATF) areas. Both the ASF and ATF in the CON showed decreasing tendencies, whereas those in other groups showed a noticeable decrease. The ANCOVA revealed that the ASF (p = 0.002) and ATF (p = 0.001) were significantly different among the groups. In particular, the higher the impulse intensity, the greater the decrease in abdominal fat. Conclusions: This study confirmed that high-impulse-intensity EMS can improve psychophysiological conditions. In other words, healthy young adults felt that the extent to which their body image, body shape, and self-esteem improved depended on how intense their EMS impulse intensities were. The results also showed that higher levels of impulse intensity led to improved physical conditions.


2019 ◽  
Vol 6 ◽  
pp. 205566831982580 ◽  
Author(s):  
Ruslinda Ruslee ◽  
Jennifer Miller ◽  
Henrik Gollee

Introduction: Functional electrical stimulation is a common technique used in the rehabilitation of individuals with a spinal cord injury to produce functional movement of paralysed muscles. However, it is often associated with rapid muscle fatigue which limits its applications. Methods: The objective of this study is to investigate the effects on the onset of fatigue of different multi-electrode patterns of stimulation via multiple pairs of electrodes using doublet pulses: Synchronous stimulation is compared to asynchronous stimulation patterns which are activated sequentially (AsynS) or randomly (AsynR), mimicking voluntary muscle activation by targeting different motor units. We investigated these three different approaches by applying stimulation to the gastrocnemius muscle repeatedly for 10 min (300 ms stimulation followed by 700 ms of no-stimulation) with 40 Hz effective frequency for all protocols and doublet pulses with an inter-pulse-interval of 6 ms. Eleven able-bodied volunteers (28 ± 3 years old) participated in this study. Ultrasound videos were recorded during stimulation to allow evaluation of changes in muscle morphology. The main fatigue indicators we focused on were the normalised fatigue index, fatigue time interval and pre-post twitch–tetanus ratio. Results: The results demonstrate that asynchronous stimulation with doublet pulses gives a higher normalised fatigue index (0.80 ± 0.08 and 0.87 ± 0.08) for AsynS and AsynR, respectively, than synchronous stimulation (0.62 ± 0.06). Furthermore, a longer fatigue time interval for AsynS (302.2 ± 230.9 s) and AsynR (384.4 ± 279.0 s) compared to synchronous stimulation (68.0 ± 30.5 s) indicates that fatigue occurs later during asynchronous stimulation; however, this was only found to be statistically significant for one of two methods used to calculate the group mean. Although no significant difference was found in pre-post twitch–tetanus ratio, there was a trend towards these effects. Conclusion: In this study, we proposed an asynchronous stimulation pattern for the application of functional electrical stimulation and investigated its suitability for reducing muscle fatigue compared to previous methods. The results show that asynchronous multi-electrode stimulation patterns with doublet pulses may improve fatigue resistance in functional electrical stimulation applications in some conditions.


Sign in / Sign up

Export Citation Format

Share Document