Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle

2005 ◽  
Vol 98 (5) ◽  
pp. 1745-1752 ◽  
Author(s):  
Yifan Yang ◽  
Andrew Creer ◽  
Bozena Jemiolo ◽  
Scott Trappe

The aim of this study was to examine the time course activation of select myogenic (MRF4, Myf5, MyoD, myogenin) and metabolic (CD36, CPT1, HKII, and PDK4) genes after an acute bout of resistance (RE) or run (Run) exercise. Six RE subjects [25 ± 4 yr (mean ± SD), 74 ± 14 kg, 1.71 ± 0.11 m] and six Run subjects (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m, 63 ± 8 ml·kg−1·min−1) were studied. Eight muscle biopsies were taken from the vastus lateralis (RE) and gastrocnemius (Run) before, immediately after, and 1, 2, 4, 8, 12 and 24 h after exercise. RE increased mRNA of MRF4 (3.7- to 4.5-fold 2–4 h post), MyoD (5.8-fold 8 h post), myogenin (2.6- and 3.5-fold 8–12 h post), HKII (3.6- to 10.5-fold 2–12 h post), and PDK4 (14- to 26-fold 2–8 h post). There were no differences in Myf5, CD36, and CPT1 mRNA levels 0–24 h post-RE. Run increased mRNA of MyoD (5.0- to 8.0-fold), HKII (12- to 16-fold), and PDK4 (32- to 52-fold) at 8–12 h postexercise. There were no differences in MRF4, Myf5, myogenin, CD36 and CPT1 mRNA levels 0–24 h post-Run. These data indicate a myogenic and metabolic gene induction with RE and Run exercise. The timing of the gene induction is variable and generally peaks 4–8 h postexercise with all gene expression not significantly different from the preexercise levels by 24 h postexercise. These data provide basic information for the timing of human muscle biopsy samples for gene-expression studies involving exercise.

2007 ◽  
Vol 103 (5) ◽  
pp. 1744-1751 ◽  
Author(s):  
Emily Louis ◽  
Ulrika Raue ◽  
Yifan Yang ◽  
Bozena Jemiolo ◽  
Scott Trappe

The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-α) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 ± 4 yr, 74 ± 14 kg, 1.71 ± 0.11 m) and RUN (25 ± 4 yr, 72 ± 5 kg, 1.81 ± 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased ( P < 0.05) mRNA expression of MuRF-1 early (3.5-fold, 1–4 h), followed by a decrease in atrogin-1 (3.3-fold) and FOXO3A (1.7-fold) 8–12 h postexercise. Myostatin mRNA decreased (6.3-fold; P < 0.05) from 1 to 24 h postexercise, whereas IL-6, IL-8, and TNF-α mRNA were elevated 2–12 h. RUN increased ( P < 0.05) MuRF-1 (3.6-fold), atrogin-1 (1.6-fold), and FOXO3A (1.9-fold) 1–4 h postexercise. Myostatin was suppressed (3.6-fold; P < 0.05) 8–12 h post-RUN. The cytokines exhibited a biphasic response, with immediate elevation ( P < 0.05) of IL-6, IL-8, and TNF-α, followed by a second elevation ( P < 0.05) 2–24 h postexercise. In general, the timing of the gene induction indicated early elevation of proteolytic genes, followed by prolonged elevation of cytokines and suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.


2005 ◽  
Vol 99 (4) ◽  
pp. 1359-1363 ◽  
Author(s):  
Laura J. Cluberton ◽  
Sean L. McGee ◽  
Robyn M. Murphy ◽  
Mark Hargreaves

Skeletal muscle possesses a high degree of plasticity and can adapt to both the physical and metabolic challenges that it faces. An acute bout of exercise is sufficient to induce the expression of a variety of metabolic genes, such as GLUT4, pyruvate dehydrogenase kinase 4 (PDK-4), uncoupling protein-3 (UCP3), and peroxisome proliferator-activated receptor-γ coactivator 1 (PGC-1). Reducing muscle glycogen levels before exercise potentiates the effect of exercise on many genes. Similarly, altered substrate availability induces transcription of many of these genes. The purpose of this study was to determine whether glucose ingestion attenuates the exercise-induced increase in a variety of exercise-responsive genes. Six male subjects (28 ± 7 yr; 83 ± 3 kg; peak pulmonary oxygen uptake = 46 ± 6 ml·kg−1·min−1) performed 60 min of cycling at 74 ± 2% of peak pulmonary oxygen uptake on two separate occasions. On one occasion, subjects ingested a 6% carbohydrate drink. On the other occasion, subjects ingested an equal volume of a sweet placebo. Muscle samples were obtained from vastus lateralis at rest, immediately after exercise, and 3 h after exercise. PDK-4, UCP3, PGC-1, and GLUT4 mRNA levels were measured on these samples using real-time RT-PCR. Glucose ingestion attenuated ( P < 0.05) the exercise-induced increase in PDK-4 and UCP3 mRNA. A similar trend ( P = 0.09) was observed for GLUT4 mRNA. In contrast, PGC-1 mRNA increased following exercise to the same extent in both conditions. These data suggest that glucose availability can modulate the effect of exercise on metabolic gene expression.


2005 ◽  
Vol 289 (1) ◽  
pp. R266-R274 ◽  
Author(s):  
A. C. Petersen ◽  
K. T. Murphy ◽  
R. J. Snow ◽  
J. A. Leppik ◽  
R. J. Aughey ◽  
...  

We investigated whether depressed muscle Na+-K+-ATPase activity with exercise reflected a loss of Na+-K+-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na+-K+-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at ∼40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na+-K+-ATPase activity via 3- O-methylfluorescein phosphatase (3- O-MFPase) activity, Na+-K+-ATPase content via [3H]ouabain binding sites, and Na+-K+-ATPase α1-, α2-, α3-, β1-, β2- and β3-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [3H]ouabain binding sites but decreased 3- O-MFPase activity by 10.7 (SD 8)% ( P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated α1-isoform mRNA by 1.5-fold at fatigue ( P < 0.05). This increase was inversely correlated with the percent change in 3- O-MFPase activity from rest to fatigue (%Δ3- O-MFPaserest-fatigue) ( r = −0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) α1-isoform mRNA was increased 1.4-fold ( P < 0.05) and approached a significant inverse correlation with %Δ3- O-MFPaserest-fatigue ( r = −0.56, P = 0.08). Exercise elevated α2-isoform mRNA at fatigue 2.5-fold ( P < 0.05), which was inversely correlated with %Δ3- O-MFPaserest-fatigue ( r = −0.60, P = 0.05). The average postexercise α2-isoform mRNA was increased 2.2-fold ( P < 0.05) and was inversely correlated with the %Δ3- O-MFPaserest-fatigue ( r = −0.68, P < 0.05). Nonsignificant correlations were found between %Δ3- O-MFPaserest-fatigue and other isoforms. Thus acute exercise transiently decreased Na+-K+-ATPase activity, which was correlated with increased Na+-K+-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na+-K+-ATPase activity with exercise.


1997 ◽  
Vol 272 (2) ◽  
pp. E255-E261 ◽  
Author(s):  
R. L. Seip ◽  
K. Mair ◽  
T. G. Cole ◽  
C. F. Semenkovich

Exercise increases skeletal muscle lipoprotein lipase (LPL) expression, but the time course of this response is not known. In the present study, we examined the time course of the LPL response to both short-term and acute exercise and measured circulating levels of putative regulators of muscle LPL. Nine adults underwent short-term exercise training (60-90 min of stationary cycling at 55-70% of leg ergometer peak oxygen uptake on 5 consecutive days). Five vastus lateralis biopsies were performed: before training, 20 h after the fourth bout (immediately before the 5th bout), and 0.2, 4, and 8 h after the fifth bout. After four bouts of exercise in 4 days, there was no increase in LPL mass or LPL mRNA exactly 20 h after the fourth bout. However, when tissues were sampled closer to the exercise bout on the 5th day, transient increases were seen. On day 5, LPL mRNA increased by 127% (P < 0.05) at 4 h postexercise and was followed by an increase in LPL mass of 93% (P < 0.05) at 8 h postexercise. Serum triglycerides decreased by 23% (P < 0.05) during the protocol. Two nonexercising subjects showed no consistent change in LPL mRNA or mass. Acute exercise transiently increased levels of norepinephrine (9-fold) and epinephrine (5-fold) and reduced insulin levels. Acute exercise preceded by four daily bouts of exercise induces a transient rise in LPL mRNA followed by rise in LPL mass, suggesting that these responses are temporally related. This induction of LPL gene expression may result from dynamic changes in serum catecholamines, plasma insulin, or events intrinsic to muscle contraction itself.


2020 ◽  
Vol 13 (6) ◽  
pp. 132 ◽  
Author(s):  
Andreia Palmeira ◽  
Emília Sousa ◽  
Aylin Köseler ◽  
Ramazan Sabirli ◽  
Tarık Gören ◽  
...  

SARS-CoV-2 Spike protein was predicted by molecular docking to bind the host cell surface GRP78, which was suggested as a putative good molecular target to inhibit Covid-19. We aimed to confirm that GRP78 gene expression was increased in blood of SARS-CoV-2 (+) versus SARS-CoV-2 (−) pneumonia patients. In addition, we aimed to identify drugs that could be repurposed to inhibit GRP78, thus with potential anti-SARS-CoV-2 activity. Gene expression studies were performed in 10 SARS-CoV-2 (−) and 24 SARS-CoV-2 (+) pneumonia patients. A structure-based virtual screen was performed with 10,761 small molecules retrieved from DrugBank, using the GRP78 nucleotide binding domain and substrate binding domain as molecular targets. Results indicated that GRP78 mRNA levels were approximately four times higher in the blood of SARS-CoV-2 (+) versus SARS-CoV-2 (−) pneumonia patients, further suggesting that GRP78 might be a good molecular target to treat Covid-19. In addition, a total of 409 compounds were identified with potential as GRP78 inhibitors. In conclusion, we found preliminary evidence that further proposes GRP78 as a possible molecular target to treat Covid-19 and that many clinically approved drugs bind GRP78 as an off-target effect. We suggest that further work should be urgently carried out to confirm if GRP78 is indeed a good molecular target and if some of those drugs have potential to be repurposed for SARS-CoV-2 antiviral activity.


2011 ◽  
Vol 110 (5) ◽  
pp. 1204-1210 ◽  
Author(s):  
Yun Chau Long ◽  
Emil Kostovski ◽  
Hanneke Boon ◽  
Nils Hjeltnes ◽  
Anna Krook ◽  
...  

Skeletal muscle plays an important role in the regulation of energy homeostasis; therefore, the ability of skeletal muscle to adapt and alter metabolic gene expression in response to changes in physiological demands is critical for energy balance. Individuals with cervical spinal cord lesions are characterized by tetraplegia, impaired thermoregulation, and altered skeletal muscle morphology. We characterized skeletal muscle metabolic gene expression patterns, as well as protein content, in these individuals to assess the impact of spinal cord injury on critical determinants of skeletal muscle metabolism. Our results demonstrate that mRNA levels and protein expression of skeletal muscle genes essential for glucose storage are reduced, whereas expression of glycolytic genes is reciprocally increased in individuals with spinal cord injury. Furthermore, expression of genes essential for lipid oxidation is coordinately reduced in spinal cord injured subjects, consistent with a marked reduction of mitochondrial proteins. Thus spinal cord injury resulted in a profound and tightly coordinated change in skeletal muscle metabolic gene expression program that is associated with the aberrant metabolic features of the tissue.


Sign in / Sign up

Export Citation Format

Share Document