scholarly journals Pulmonary vasodilation by acetazolamide during hypoxia: impact of methyl-group substitutions and administration route in conscious, spontaneously breathing dogs

2014 ◽  
Vol 116 (7) ◽  
pp. 715-723 ◽  
Author(s):  
Philipp A. Pickerodt ◽  
Roland C. Francis ◽  
Claudia Höhne ◽  
Friederike Neubert ◽  
Stella Telalbasic ◽  
...  

Acetazolamide (ACZ) prevents hypoxic pulmonary vasoconstriction (HPV) in isolated lungs, animals, and humans, but not by carbonic anhydrase (CA) inhibition. We studied administration routes in, and certain structural aspects of, ACZ critical to HPV inhibition. Analogs of ACZ during acute hypoxia were tested in unanesthetized dogs. Dogs breathed normoxic gas for 1 h (inspired O2 fraction = 0.21), followed by 10% O2 for 2 h (hypoxia) in these protocols: 1) controls; 2) ACZ intravenously (2 mg·kg−1·h−1); 3) ACZ orally (5 mg/kg, 12 and 1 h before the experiment); 4) inhaled ACZ (750 mg); 5) methazolamide (MTZ) intravenously (3 mg·kg−1·h−1); and 6) N-methyl-acetazolamide (NMA) intravenously (10 mg·kg−1·h−1). In controls, mean pulmonary arterial pressure (MPAP) increased 7 mmHg, and pulmonary vascular resistance (PVR) 224 dyn·s·cm−5 with hypoxia ( P < 0.05). With intravenous and inhaled ACZ, MPAP and PVR did not change during hypoxia. With oral ACZ, HPV was only slightly suppressed; MPAP increased 5 mmHg and PVR by 178 dyn·s·cm−5 during hypoxia. With MTZ and NMA, the MPAP rise (4 ± 2 mmHg) was reduced, and PVR did not increase during hypoxia compared with normoxia (MTZ intravenous: 81 ± 77 and 68 ± 82 dyn·s·cm−5 with NMA intravenous). Inhaled ACZ prevents HPV, but not without causing systemic CA inhibition. NMA, a compound lacking CA inhibiting effects by methylation at the sulfonamide moiety, and MTZ, a CA-inhibiting analog methylated at the thiadiazole ring, are only slightly less effective than ACZ in reducing HPV.

2004 ◽  
Vol 97 (2) ◽  
pp. 515-521 ◽  
Author(s):  
Claudia Höhne ◽  
Martin O. Krebs ◽  
Manuela Seiferheld ◽  
Willehad Boemke ◽  
Gabriele Kaczmarczyk ◽  
...  

Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O2 for the first hour and then 8 or 10% O2 for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O2 fraction (FiO2) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 μg·kg−1·min−1 continuously), FiO2 = 0.10; protocol 3: Acz given as above, but with FiO2 reduced to 0.08 to match the arterial Po2 (PaO2) observed during hypoxia in controls. PaO2 was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 ± 1 to 23 ± 1 mmHg, and pulmonary vascular resistance increased from 464 ± 26 to 679 ± 40 dyn·s−1·cm−5 ( P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 ± 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn·s−1·cm−5. These values did not change during hypoxia. In dogs given Acz at 10% O2, the arterial PaO2 was 50 Torr owing to hyperventilation, whereas in those breathing 8% O2 the PaO2 was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po2, nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.


2005 ◽  
Vol 289 (1) ◽  
pp. L5-L13 ◽  
Author(s):  
Letitia Weigand ◽  
Joshua Foxson ◽  
Jian Wang ◽  
Larissa A. Shimoda ◽  
J. T. Sylvester

Previous studies indicated that acute hypoxia increased intracellular Ca2+ concentration ([Ca2+]i), Ca2+ influx, and capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCC) in smooth muscle cells from distal pulmonary arteries (PASMC), which are thought to be a major locus of hypoxic pulmonary vasoconstriction (HPV). Moreover, these effects were blocked by Ca2+-free conditions and antagonists of SOCC and nonselective cation channels (NSCC). To test the hypothesis that in vivo HPV requires CCE, we measured the effects of SOCC/NSCC antagonists (SKF-96365, NiCl2, and LaCl3) on pulmonary arterial pressor responses to 2% O2 and high-KCl concentrations in isolated rat lungs. At concentrations that blocked CCE and [Ca2+]i responses to hypoxia in PASMC, SKF-96365 and NiCl2 prevented and reversed HPV but did not alter pressor responses to KCl. At 10 μM, LaCl3 had similar effects, but higher concentrations (30 and 100 μM) caused vasoconstriction during normoxia and potentiated HPV, indicating actions other than SOCC blockade. Ca2+-free perfusate and the voltage-operated Ca2+ channel (VOCC) antagonist nifedipine were potent inhibitors of pressor responses to both hypoxia and KCl. We conclude that HPV required influx of Ca2+ through both SOCC and VOCC. This dual requirement and virtual abolition of HPV by either SOCC or VOCC antagonists suggests that neither channel provided enough Ca2+ on its own to trigger PASMC contraction and/or that during hypoxia, SOCC-dependent depolarization caused secondary activation of VOCC.


1991 ◽  
Vol 70 (4) ◽  
pp. 1867-1873 ◽  
Author(s):  
P. Lejeune ◽  
J. L. Vachiery ◽  
J. M. De Smet ◽  
M. Leeman ◽  
S. Brimioulle ◽  
...  

The effects of an increase in alveolar pressure on hypoxic pulmonary vasoconstriction (HPV) have been reported variably. We therefore studied the effects of positive end-expiratory pressure (PEEP) on pulmonary hemodynamics in 13 pentobarbital-anesthetized dogs ventilated alternately in hyperoxia [inspired O2 fraction (FIO2) 0.4] and in hypoxia (FIO2 0.1). In this intact animal model, HPV was defined as the gradient between hypoxic and hyperoxic transmural (tm) mean pulmonary arterial pressure [Ppa(tm)] at any level of cardiac index (Q). Ppa(tm)/Q plots were constructed with mean transmural left atrial pressure [Pla(tm)] kept constant at approximately 6 mmHg (n = 5 dogs), and Ppa(tm)/PEEP plots were constructed with Q kept constant approximately 2.8 l.min-1.m-2 and Pla(tm) kept constant approximately 8 mmHg (n = 8 dogs). Q was manipulated using a femoral arteriovenous bypass and a balloon catheter in the inferior vena cava. Pla(tm) was held constant by a balloon catheter placed by left thoracotomy in the left atrium. Increasing PEEP, from 0 to 12 Torr by 2-Torr increments, at constant Q and Pla(tm), increased Ppa(tm) from 14 +/- 1 (SE) to 19 +/- 1 mmHg in hyperoxia but did not affect Ppa(tm) (from 22 +/- 2 to 23 +/- 1 mmHg) in hypoxia. Both hypoxia and PEEP, at constant Pla(tm), increased Ppa(tm) over the whole range of Q studied, from 1 to 5 l/min, but more at the highest than at the lowest Q and without change in extrapolated pressure intercepts. Adding PEEP to hypoxia did not affect Ppa(tm) at all levels of Q.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 64 (6) ◽  
pp. 2538-2543 ◽  
Author(s):  
A. J. Lonigro ◽  
R. S. Sprague ◽  
A. H. Stephenson ◽  
T. E. Dahms

Leukotrienes C4 and D4 have been implicated as possible mediators of hypoxic pulmonary vasoconstriction. To test this hypothesis, the relationship between pulmonary leukotriene (LT) synthesis in response to hypoxia and alterations in pulmonary hemodynamics was evaluated in pentobarbital sodium-anesthetized, neuromuscular-blocked, male, mongrel dogs. A reduction in the fraction of inspired O2 (FIO2) in vehicle-treated animals (n = 12) from 0.21 to 0.10 was associated with increases in LTC4 and LTD4 in bronchoalveolar lavage fluid (BALF). After 30 min of continuous hypoxia, LTC4 and LTD4 increased from control values of 59.4 +/- 10.4 and 91.7 +/- 18.1 ng/lavage to 142.7 +/- 31.8 (P less than 0.05) and 156.3 +/- 25.3 (P less than 0.01) ng/lavage, respectively. Concomitantly, mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) were increased over control by 67 +/- 7 (P less than 0.001) and 62 +/- 7% (P less than 0.001), respectively. In contrast, in animals treated with diethylcarbamazine (n = 5), a leukotriene A4 synthase inhibitor, identical reductions in FIO2 were not associated with increases in LTC4 and LTD4 in BALF, although at the same time period, Ppa and PVR were increased over control by 60 +/- 13 (P less than 0.05) and 112 +/- 31% (P less than 0.05), respectively. These results, therefore, do not support the contention that leukotrienes mediate hypoxic pulmonary vasoconstriction in dogs.


2012 ◽  
Vol 92 (1) ◽  
pp. 367-520 ◽  
Author(s):  
J. T. Sylvester ◽  
Larissa A. Shimoda ◽  
Philip I. Aaronson ◽  
Jeremy P. T. Ward

It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.


1993 ◽  
Vol 74 (5) ◽  
pp. 2188-2193 ◽  
Author(s):  
P. Ewalenko ◽  
C. Stefanidis ◽  
A. Holoye ◽  
S. Brimioulle ◽  
R. Naeije

The pulmonary vascular effects of inhaled anesthetics have been reported variably. We compared the effects of intravenous anesthesia (propofol) and inhalational anesthesia (isoflurane) on multipoint mean [pulmonary arterial pressure (Ppa)-pulmonary arterial occluded pressure (PpaO)]/cardiac output (Q) plots and on pulmonary vascular impedance (PVZ) spectra in eight dogs alternatively ventilated in hyperoxia [inspired O2 fraction (FIO2) 0.4] and in hypoxia (FIO2 0.1). Q was altered by a manipulation of venous return. During propofol, hypoxia increased (Ppa-PpaO) by an average of 2–3 mmHg over the entire range of Q studied, from 1 to 2.5 l.min-1 x m-2. This hypoxic pulmonary vasoconstriction (HPV) was associated with insignificant changes in PVZ. Decreasing Q in hypoxia and hyperoxia did not affect PVZ. Compared with propofol, isoflurane decreased (Ppa-PpaO) by an average of 2–5 mmHg at all levels of Q studied in both hypoxia and hyperoxia but did not affect HPV. During isoflurane anesthesia, 0 Hz PVZ was lower (P < 0.01) in hypoxia, but otherwise the PVZ spectrum was not different from that recorded during propofol anesthesia. We conclude that, in dogs, 1 degree general anesthesia with isoflurane alone decreases pulmonary vascular tone without inhibition of HPV and that 2 degrees pressure/Q plots in the time domain are more sensitive than those in the frequency domain to subtle hemodynamic changes induced by hypoxia or isoflurane at the periphery of the pulmonary vasculature.


1986 ◽  
Vol 61 (6) ◽  
pp. 2116-2121 ◽  
Author(s):  
J. B. Gordon ◽  
R. C. Wetzel ◽  
M. L. McGeady ◽  
N. F. Adkinson ◽  
J. T. Sylvester

To determine whether cyclooxygenase products mediated the attenuation of hypoxic pulmonary vasoconstriction induced by estradiol, we measured pulmonary arterial pressure at a flow of 50 ml X min-1 X kg-1 (Ppa50) during steady-state exposures to inspired O2 tensions (PIO2) between 0 and 200 Torr in isolated lungs of juvenile ewes. Intramuscular estradiol (10 mg) 44–60 h before study significantly decreased perfusate concentrations of 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), the stable metabolite of the pulmonary vasodilator, prostacyclin, but did not significantly affect the stimulus-response relationship between PIO2 and Ppa50. Estradiol (20 mg) 3–5 days before study increased 6-keto-PGF1 alpha concentrations and decreased Ppa50 at PIO2 of 10, 30, and 50 Torr. Indomethacin added to the perfusate of these lungs reduced 6-keto-PGF1 alpha to undetectable levels and altered the estradiol-induced attenuation, increasing Ppa50 at PIO2 of 10 and 30 Torr, but decreasing Ppa50 at PIO2 of 200 Torr. Despite these effects, Ppa50 remained lower than the values measured in lungs not treated with estradiol. These results suggest that the estradiol-induced attenuation of the hypoxic stimulus-response relationship was mediated only in part by cyclooxygenase products, the net effects of which were vasodilation at PIO2 of 10 and 30 Torr, but vasoconstriction at PIO2 of 200 Torr.


2008 ◽  
Vol 294 (2) ◽  
pp. R601-R605 ◽  
Author(s):  
Bodil Petersen ◽  
Maria Deja ◽  
Roland Bartholdy ◽  
Bernd Donaubauer ◽  
Sven Laudi ◽  
...  

Endogenous endothelin (ET)-1 modulates hypoxic pulmonary vasoconstriction (HPV). Accordingly, intravenously applied ETAreceptor antagonists reduce HPV, but this is accompanied by systemic vasodilation. We hypothesized that inhalation of an ETAreceptor antagonist might act selectively on the pulmonary vasculature and investigated the effects of aerosolized LU-135252 in an experimental model of HPV. Sixteen piglets (weight: 25 ± 1 kg) were anesthetized and mechanically ventilated at an inspiratory oxygen fraction (FiO2) of 0.3. After 1 h of hypoxia at FiO20.15, animals were randomly assigned either to receive aerosolized LU-135252 as bolus (0.3 mg/kg for 20 min; n = 8, LU group), or to receive aerosolized saline ( n = 8, controls). In all animals, hypoxia significantly increased mean pulmonary arterial pressure (32 ± 1 vs. 23 ± 1 mmHg; P < 0.01; means ± SE) and increased arterial plasma ET-1 (0.52 ± 0.04 vs. 0.37 ± 0.05 fmol/ml; P < 0.01) compared with mild hyperoxia at FiO20.3. Inhalation of LU-135252 induced a significant and sustained decrease in mean pulmonary arterial pressure compared with controls (LU group: 27 ± 1 mmHg; controls: 32 ± 1 mmHg; values at 4 h of hypoxia; P < 0.01). In parallel, mean systemic arterial pressure and cardiac output remained stable and were not significantly different from control values. Consequently, in our experimental model of HPV, the inhaled ETAreceptor antagonist LU-135252 induced selective pulmonary vasodilation without adverse systemic hemodynamic effects.


1990 ◽  
Vol 259 (1) ◽  
pp. H93-H100 ◽  
Author(s):  
P. Lejeune ◽  
J. M. De Smet ◽  
P. de Francquen ◽  
M. Leeman ◽  
S. Brimioulle ◽  
...  

To further explore the mechanism of hypoxic pulmonary vasoconstriction, we studied the mean pulmonary arterial pressure (Ppa)/left atrial pressure (Pla) relationship at fixed cardiac index (Q) and the Ppa/Q relationship at several levels of fixed Pla in pentobarbital sodium-anesthetized dogs ventilated alternately in hyperoxia [fraction of inspired O2 (FIO2) 0.4 or 1.0] and in hypoxia (FIO2 0.1). In all experimental conditions, Ppa/Q plots were linear with extrapolated pressure intercepts (Pi) not significantly different from Pla. Hypoxia increased the slope of Ppa/Q plots and did not affect Pi. In hyperoxia, increasing Pla (3 to 26 mmHg) induced approximately equal increases in Ppa at fixed Q and shifted Ppa/Q plots toward higher pressures in a parallel manner. In hypoxia, increasing Pla (4 to 25 mmHg) did not affect Ppa at fixed Q until Pla exceeded 16 mmHg and shifted Ppa/Q plots toward higher pressures with a decrease in slope. Consequently, the hypoxia-induced increases in Ppa at constant Q and constant Pla were attenuated at higher Pla. Thus, in anesthetized dogs, hypoxia increases the slope of Ppa/Q plots without affecting Pi at fixed Pla, and an increase in Pla inhibits hypoxic pulmonary vasoconstriction. These results can be explained without invoking a hypoxia-induced Starling resistor mechanism in the pulmonary circulation.


1993 ◽  
Vol 74 (5) ◽  
pp. 2049-2056 ◽  
Author(s):  
L. D. Nelin ◽  
G. S. Krenz ◽  
D. A. Rickaby ◽  
J. H. Linehan ◽  
C. A. Dawson

Recently, we presented a simple two-parameter distensible vessel model as a potential tool for characterizing pulmonary vascular pressure vs. flow curves under zone 3 conditions (Linehan et al. J. Appl. Physiol. 73: 987–994, 1992). One parameter, alpha, represents the distensibility of the resistance vessels as the fractional change in vessel diameter per Torr change in pressure, and the other parameter, R0, represents the vascular resistance that would exist if the resistance vessels were at their respective diameters obtained if the vascular pressure were zero. The objective of the present study was to determine whether this distensible vessel model was capable of describing the pressure vs. flow data obtained during hypoxia vasoconstriction and under control conditions in isolated lungs from neonatal pigs. The piglet lungs were perfused with autologous blood, and the pulmonary arterial pressure was measured over a range of flow rates from 15 to 250 ml.min-1 x kg-1 at constant left atrial (3 Torr) pressure. The model provided a reasonable fit to the data under both conditions. Hypoxia resulted in a significant increase in R0, from 0.39 +/- 0.10 Torr.ml-1 x min.kg during control conditions to 1.41 +/- 0.46 Torr.ml-1 x min.kg during hypoxia. alpha was 2.4 +/- 0.4%/Torr under control conditions and 2.0 +/- 0.4%/Torr during hypoxia, but this difference was not statistically significant. The results suggest that the distensible vessel model may be useful for interpreting pressure-flow data in terms of changes in geometry and distensibility of the resistance vessels in response to a vasoconstrictor stimulus such as hypoxia.


Sign in / Sign up

Export Citation Format

Share Document