Humidity-Dependent Cold Cells on the Antenna of the Stick Insect

2007 ◽  
Vol 97 (6) ◽  
pp. 3851-3858 ◽  
Author(s):  
Harald Tichy

We present the first systematic study of the response of insect “cold cells” to a variation in the partial pressure of water vapor in ambient air. The cold cells on the antenna of the stick insect respond with an increase in activity when either the temperature or the partial pressure of water vapor is suddenly reduced. This double dependency does not in itself constitute bimodality because it could disappear with the proper choice of parameters involving temperature and humidity. In this study, we demonstrate that the evaporation of a small amount of water from the sensillum surface resulting from a drop in the water vapor pressure—leading to a transient drop in temperature and thus to a brief rise in impulse frequency—is the most plausible explanation for this bimodal response. We also show with an order-of-magnitude calculation that this mechanism is plausible and consistent with the amounts of water vapor potentially present on the sensillum. We hypothesize that a film of moisture collects on the hygroscopic sensillum surface at higher humidity and then tends to evaporate when humidity is lowered. The water might even be bound loosely within the cuticular wall, a situation conceivable in a sensillum that contains two hygroreceptive cells in addition to the cold cell.

2019 ◽  
Vol 7 (4) ◽  
pp. 300-306
Author(s):  
Petko Tsankov ◽  
Ivan Binev

This paper reviews, describes and analyzes the accuracy of 24 dependencies for determining the partial pressure of saturated water vapor. An important indicator of this process is the partial pressure of water vapor in the air, and its maximum value is called saturated water vapor pressure or water vapor saturation pressure, or partial saturated water vapor pressure. The assessment is made against the accepted dependency of Hardy-Wexler. Conclusions and recommendations for simple and highly accurate dependencies ps = f(t) were made.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 335-348
Author(s):  
YOUNES KHOSRAVI ◽  
HASAN LASHKARI ◽  
HOSEIN ASAKEREH

Recognitionanddetectionofclimaticparameters inhave animportant role inclimate change monitoring. In this study, the analysis of oneofthe most importantparameters, water vapor pressure (WVP), was investigated. For this purpose, two non-parametric techniques, Mann-Kendall and Sen's Slope Estimator, were used to analyze the WVP trend and to determine the magnitude of the trends, respectively. To analyze these tests, ground station observations [10 stations for period of 44 years (1967-2010)] and gridded data [pixels with the dimension of 9 × 9 km over a 30-year period (1981-2010)] in South and SouthwestofIran were used. By programming in MATLAB software, the monthly, seasonal and annual WVP time series were extracted and MK and Sen's slope estimator tests were done. The results of monthly MK test on ground station observations showed that the significant downward trends are more considerable than significant upward trends. It also showed that the WVP highest frequency was more in warm months, April to September and the highest frequency of significant trends slope was in February and May. The spatial distribution of MK test of monthly gridded WVP time series showed that the upward trends were detected mostly in western zone and near the Persian Gulf in August. On the other hand, the downward trends through months. The maximum and minimum values of positive trends slope occurred in warm months and cold months, respectively. The analysis of the MK test of the annual WVP time series indicated the upward significant trends in the southeast and southwest zones of study area.  


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Pamela L. Dickrell ◽  
N. Argibay ◽  
Osman L. Eryilmaz ◽  
Ali Erdemir ◽  
W. Gregory Sawyer

Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H2O and O2. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.


Sign in / Sign up

Export Citation Format

Share Document