Innovative methods measure the neural correlates of proprioception in multiple sclerosis

2020 ◽  
Vol 124 (4) ◽  
pp. 1007-1009
Author(s):  
Tyler T. Whittier ◽  
Victoria Bandera

The authors of the recently published article “Position sense deficits at the lower limbs in early multiple sclerosis: clinical and neural correlates” (Iandolo R, Bommarito G, Falcitano L, Schiavi S, Piaggio N, Mancardi GL, Casadio M, Inglese M. Neurorehabil Neural Repair 34: 260–270, 2020) provide strong evidence for the neural correlates leading to deficits in proprioception in multiple sclerosis. We believe their findings and innovative methodology show promise for how proprioception is measured in this and other clinical populations. We also suggest that further work should investigate the role of the corpus callosum in proprioceptive balance control.

2020 ◽  
Vol 34 (3) ◽  
pp. 260-270 ◽  
Author(s):  
Riccardo Iandolo ◽  
Giulia Bommarito ◽  
Laura Falcitano ◽  
Simona Schiavi ◽  
Niccolò Piaggio ◽  
...  

Background/Objective. Position sense, defined as the ability to identify joint and limb position in space, is crucial for balance and gait but has received limited attention in patients with multiple sclerosis (MS). We investigated lower limb position sense deficits, their neural correlates, and their effects on standing balance in patients with early MS. Methods. A total of 24 patients with early relapsing-remitting MS and 24 healthy controls performed ipsilateral and contralateral matching tasks with the right foot during functional magnetic resonance imaging. Corpus callosum (CC) integrity was estimated with diffusion tensor imaging. Patients also underwent an assessment of balance during quiet standing. We investigated differences between the 2 groups and the relations among proprioceptive errors, balance performance, and functional/structural correlates. Results. During the contralateral matching task, patients demonstrated a higher matching error than controls, which correlated with the microstructural damage of the CC and with balance ability. In contrast, during the ipsilateral task, the 2 groups showed a similar matching performance, but patients displayed a functional reorganization involving the parietal areas. Neural activity in the frontoparietal regions correlated with the performance during both proprioceptive matching tasks and quiet standing. Conclusion. Patients with early MS had subtle, clinically undetectable, position sense deficits at the lower limbs that, nevertheless, affected standing balance. Functional changes allowed correct proprioception processing during the ipsilateral matching task but not during the more demanding bilateral task, possibly because of damage to the CC. These findings provide new insights into the mechanisms underlying disability in MS and could influence the design of neurorehabilitation protocols.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256155
Author(s):  
Intakhar Ahmad ◽  
Stig Wergeland ◽  
Eystein Oveland ◽  
Lars Bø

Incomplete remyelination is frequent in multiple sclerosis (MS)-lesions, but there is no established marker for recent remyelination. We investigated the role of the oligodendrocyte/myelin protein ermin in de- and remyelination in the cuprizone (CPZ) mouse model, and in MS. The density of ermin+ oligodendrocytes in the brain was significantly decreased after one week of CPZ exposure (p < 0.02). The relative proportion of ermin+ cells compared to cells positive for the late-stage oligodendrocyte marker Nogo-A increased at the onset of remyelination in the corpus callosum (p < 0.02). The density of ermin-positive cells increased in the corpus callosum during the CPZ-phase of extensive remyelination (p < 0.0001). In MS, the density of ermin+ cells was higher in remyelinated lesion areas compared to non-remyelinated areas both in white- (p < 0.0001) and grey matter (p < 0.0001) and compared to normal-appearing white matter (p < 0.001). Ermin immunopositive cells in MS-lesions were not immunopositive for the early-stage oligodendrocyte markers O4 and O1, but a subpopulation was immunopositive for Nogo-A. The data suggest a relatively higher proportion of ermin immunopositivity in oligodendrocytes compared to Nogo-A indicates recent or ongoing remyelination.


Author(s):  
Moussa A. Chalah ◽  
Naji Riachi ◽  
Rechdi Ahdab ◽  
Alain Créange ◽  
Jean-Pascal Lefaucheur ◽  
...  

2013 ◽  
Vol 260 (8) ◽  
pp. 1997-2004 ◽  
Author(s):  
Anne-Marie Ternes ◽  
Jerome J. Maller ◽  
Joanne Fielding ◽  
Patricia Addamo ◽  
Owen White ◽  
...  

2012 ◽  
Vol 70 (9) ◽  
pp. 733-740 ◽  
Author(s):  
Maria José Sá

The physiopathology of symptoms and signs in multiple sclerosis (MS) is a less divulged topic albeit its importance in the patients' management. OBJECTIVE: It was to summarize the main biophysical and biochemical mechanisms which produce the clinical manifestations in MS. RESULTS: The mechanisms underpinning neurological deficits are described in the relapsing and in the progressive phases, stressing inflammatory and neurodegenerative components, especially demyelination, axonal damage and conduction impairment. Transient worsening based in Uhthoff's phenomenon, mechanisms producing positive symptoms, as paraesthesias and Lhermitte sign due to axonal hiperexcitability and ephaptic interactions, and development of cortical symptoms will also be addressed. The variety of processes leading to neural repair and functional recovery in the remitting phase is focused, as remyelination and adaptive changes due to neural plasticity. CONCLUSION: The awareness of mechanisms producing symptoms in MS emphasises the role of symptomatic and rehabilitation therapies in the improvement of patients' well-being.


2014 ◽  
Vol 125 ◽  
pp. S134
Author(s):  
H. Ertasoglu Toydemir ◽  
M. Gokyigit Celik ◽  
E. Uysal ◽  
L. Gundogdu Celebi

2000 ◽  
Vol 59 (3) ◽  
pp. 150-158 ◽  
Author(s):  
Nadia Ortiz ◽  
Michael Reicherts ◽  
Alan J. Pegna ◽  
Encarni Garran ◽  
Michel Chofflon ◽  
...  

Patients suffering from Multiple Sclerosis (MS) have frequently been found to suffer from damage to callosal fibers. Investigations have shown that this damage is associated with signs of hemisphere disconnections. The aim of our study was to provide evidence for the first signs of interhemispheric dysfunction in a mildly disabled MS population. Therefore, we explored whether the Interhemispheric Transfer (IT) deficit is multi-modal and sought to differentiate two MS evolution forms, on the basis of an interhemispheric disconnection index. Twenty-two patients with relapsing-remitting form of MS (RRMS) and 14 chronic-progressive (CPMS) were compared with matched controls on four tasks: a tachistoscopic verbal and non-verbal decision task, a dichotic listening test, cross tactile finger localization and motor tapping. No overall impairment was seen. The dichotic listening and lexical decision tasks were the most sensitive to MS. In addition, CPMS patients' IT was more impaired and was related to the severity of neurological impairment. The different sizes of the callosal fibers, which determine their vulnerability, may explain the heterogeneity of transfer through the Corpus Callosum. Therefore, evaluation of IT may be of value as an index of evolution in MS.


Sign in / Sign up

Export Citation Format

Share Document