scholarly journals Estimates of persistent inward current in human motor neurons during postural sway

2019 ◽  
Vol 122 (5) ◽  
pp. 2095-2110 ◽  
Author(s):  
Ryan C. A. Foley ◽  
Jayne M. Kalmar

Persistent inward current (PIC) plays a critical role in setting the gain of spinal motor neurons. In humans, most estimates of PIC are made from plantarflexor or dorsiflexor motor units in a seated position. This seated and static posture negates the task-dependent nature of the monoaminergic drive and afferent inhibition that modulate PIC activation. Our purpose was to estimate PIC during both the conventional seated posture and in a more functionally relevant anterior postural sway. We hypothesized that paired motor unit estimates of PIC would be greater when during standing compared with sitting. Soleus motor neuron PIC was estimated via the paired motor unit (PMU) technique. For each motor unit pair, difference in reference unit firing frequency (ΔF) estimates of PIC were made during isometric ramps in plantarflexion force during sitting (conventional approach) and during standing anterior postural sway (new approach). Baseline reciprocal inhibition (RI) was also measured in each posture using the poststimulus time histogram technique. ΔF estimates during standing postural sway were not different [2.64 ± 0.95 pulses/s (pps), P = 0.098] from seated PIC estimates (3.15 ± 1.45 pps) measured from the same motor unit pair. Similarly, reciprocal inhibition at the onset of each task was the same in standing (−0.60 ± 0.32, P = 0.301) and seated (−0.86 ± 0.82) postures. PMU recordings made during standing postural sway met all assumptions that underlay the PMU technique, including rate modulation ≥0.5 pps (3.11 ± 1.90 pps), rate-rate correlation r ≥ 0.7 (0.84 ± 0.13), and time between reference and test unit recruitment ≥1 s (1.83 ± 0.81 s). This study presents a novel, functionally relevant standing method for investigating PIC in humans. NEW & NOTEWORTHY Paired motor unit (PMU) estimates of persistent inward current (PIC) in human soleus motor units are typically made in seated posture. Our study demonstrates that these estimates can be made during standing forward sway, a task that more accurately reflects the postural role of human soleus muscle. PMU recordings made during standing postural sway were validated using all previously published criteria used to test the assumptions of the PMU technique. Standing estimates of PIC did not differ from seated estimates made from the same motor unit pairs.

2014 ◽  
Vol 111 (9) ◽  
pp. 1877-1884 ◽  
Author(s):  
Michael S. Vandenberk ◽  
Jayne M. Kalmar

Persistent inward current (PIC) plays an important role in setting the input-output gain of motoneurons. In humans, these currents are estimated by calculating the difference between synaptic input at motor unit recruitment and derecruitment (ΔF) derived from paired motor unit recordings. The primary objective of this study was to use the relationship between reciprocal inhibition (RI) and PIC to estimate the contribution of PIC relative to other motoneuron properties that result in nonlinear motor unit firing behavior. This study also assessed the contribution of other intrinsic properties (spike threshold accommodation and spike frequency adaptation) to ΔF estimates of PIC in human motor units by using ramps with varying rates of rise and duration. It was hypothesized that slower rates of ramp rise and longer ramp durations would inflate ΔF estimates of PIC, and RI and PIC values would only be correlated during the ramp with the fastest rate of rise and shortest duration when spike threshold accommodation and spike frequency adaptation is minimized. Fourteen university-aged participants took part in this study. Paired motor unit recordings were made from the right soleus muscle during ramp contractions of plantar flexors with three different rates of rise and durations. ΔF estimates of PIC increased with decreased rates of ramp rise ( P < 0.01) and increased ramp durations ( P < 0.01), most likely due to spike frequency adaptation. A correlation ( r = 0.41; P < 0.03) between ΔF and RI provides evidence that PIC is the primary contributor to ΔF in shorter ramps with faster rates of rise.


2018 ◽  
Vol 119 (5) ◽  
pp. 1699-1706 ◽  
Author(s):  
Utku Ş. Yavuz ◽  
Francesco Negro ◽  
Robin Diedrichs ◽  
Dario Farina

Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted between ankle flexor and extensor muscles is asymmetric. The functional implication of asymmetric transmission may be associated with the neural strategies of postural control.


2007 ◽  
Vol 17 (04) ◽  
pp. 319-327 ◽  
Author(s):  
VASSILIS CUTSURIDIS

It is suggested that co-contraction of antagonist motor units perhaps due to abnormal disynaptic I a reciprocal inhibition is responsible for Parkinsonian rigidity. A neural model of Parkinson's disease bradykinesia is extended to incorporate the effects of spindle feedback on key cortical cells and examine the effects of dopamine depletion on spinal activities. Simulation results show that although reciprocal inhibition is reduced in DA depleted case, it doesn't lead to co-contraction of antagonist motor neurons. Implications to Parkinsonian rigidity are discussed.


1993 ◽  
Vol 70 (4) ◽  
pp. 1433-1439 ◽  
Author(s):  
B. D. Clark ◽  
S. M. Dacko ◽  
T. C. Cope

1. An attempt was made to repeat the observation that cutaneous input to the cat medial gastrocnemius (MG) muscle sometimes had the differential effect of inhibiting motoneurons with slow axonal conduction velocity while simultaneously exciting others with fast conduction velocity. Dual microelectrode recording from intact ventral root filaments was used to study the effects of cutaneous inputs on recruitment order and on firing frequency of physiologically characterized MG motor units in decerebrate cats. Motor responses to pinch of the skin over the lateral surface of the ankle as well as electrical stimulation of the caudal cutaneous sural (CCS) nerve were contrasted with the responses to static muscle stretch as well as muscle vibration. 2. In contrast to the prediction, recruitment order in pairwise tests was the same for skin pinch or CCS stimulation as it was for MG stretch or vibration in all 32 tested pairs of motor units. This sample included seven pairs comprising one slow-twitch (S) and one fast-twitch motor unit, where the predicted reversal of recruitment should have been most apparent. Regardless of the source of excitation, recruitment of motor units of the MG was consistent with Henneman's size principle in approximately 90% of trials. 3. Skin pinch increased the firing rate of 30 of 32 individual motor units previously activated by stretch or vibration, including 7 slow-twitch units. In the remaining two units, skin pinch transiently (100-400 ms) slowed the firing of an S unit in 11 of 13 vibration + pinch trials. The other unit (type unknown) showed one or two retarded spikes in each of four vibration + pinch trials. In three S units, including the lone inhibitable unit and two others that were only excited by skin pinch, there was a significant positive rank correlation between change in unit firing frequency and change in soleus integrated electromyographic activity.(ABSTRACT TRUNCATED AT 400 WORDS)


Physiology ◽  
2018 ◽  
Vol 33 (2) ◽  
pp. 113-126 ◽  
Author(s):  
Matthew J. Fogarty ◽  
Carlos B. Mantilla ◽  
Gary C. Sieck

Breathing occurs without thought but is controlled by a complex neural network with a final output of phrenic motor neurons activating diaphragm muscle fibers (i.e., motor units). This review considers diaphragm motor unit organization and how they are controlled during breathing as well as during expulsive behaviors.


2015 ◽  
Vol 113 (1) ◽  
pp. 182-191 ◽  
Author(s):  
Juan A. Gallego ◽  
Jakob L. Dideriksen ◽  
Ales Holobar ◽  
Jaime Ibáñez ◽  
José L. Pons ◽  
...  

Tremor in essential tremor (ET) is generated by pathological oscillations at 4–12 Hz, likely originating at cerebello-thalamo-cortical pathways. However, the way in which tremor is represented in the output of the spinal cord circuitries is largely unknown because of the difficulties in identifying the behavior of individual motor units from tremulous muscles. By using novel methods for the decomposition of multichannel surface EMG, we provide a systematic analysis of the discharge properties of motor units in nine ET patients, with concurrent recordings of EEG activity. This analysis allowed us to infer the contribution of common synaptic inputs to motor neurons in ET. Motor unit short-term synchronization was significantly greater in ET patients than in healthy subjects. Furthermore, the strong association between the degree of synchronization and the peak in coherence between motor unit spike trains at the tremor frequency indicated that the high synchronization levels were generated mainly by common synaptic inputs specifically at the tremor frequency. The coherence between EEG and motor unit spike trains demonstrated the presence of common cortical input to the motor neurons at the tremor frequency. Nonetheless, the strength of this input was uncorrelated to the net common synaptic input at the tremor frequency, suggesting a contribution of spinal afferents or secondary supraspinal pathways in projecting common input at the tremor frequency. These results provide the first systematic analysis of the neural drive to the muscle in ET and elucidate some of its characteristics that determine pathological tremulous muscle activity.


2010 ◽  
Vol 103 (3) ◽  
pp. 1295-1303 ◽  
Author(s):  
Esther Udina ◽  
Jessica D'Amico ◽  
Austin J. Bergquist ◽  
Monica A. Gorassini

Recruitment and repetitive firing of spinal motoneurons depend on the activation of persistent inward calcium and sodium currents (PICs) that are in turn facilitated by serotonin and norepinephrine that arise primarily from the brain stem. Considering that in rats motoneuron PICs are greatly facilitated by increasing the presynaptic release of norepinephrine with amphetamine, we sought similar evidence for the modulation of PICs in human motoneurons. Pairs of motor units were recorded during a gradually increasing and then decreasing voluntary contraction. The firing frequency ( F) of the lower-threshold (control) motor unit was used as an estimate of the synaptic input to the higher-threshold (test) motor unit. Generally, PICs are initiated during the recruitment of a motoneuron and subsequently provide a fixed depolarizing current that helps the synaptic input maintain firing until derecruitment. Thus the amplitude of the PIC in the test motor unit was estimated from the difference in synaptic input (Δ F) needed to maintain minimal firing once the PIC was fully activated (measured at the time of test unit derecruitment) compared with the larger synaptic input required to initiate firing prior to full PIC activation (measured at the time of test unit recruitment; Δ F = Frecruit − Fderecruit). Moreover, the activation time of the PIC was estimated as the minimal contraction duration needed to produce a maximal PIC (Δ F). In five subjects, oral administration of amphetamine, but not placebo, increased the Δ F by 62% [from 3.7 ± 0.6 to 6.0 ± 0.8 (SD) imp/s, P = 0.001] and decreased the time needed to activate a maximal Δ F from ∼2 to 0.5 s. Both findings suggest that the endogenous facilitation of PICs from brain stem derived norepinephrine plays an important role in modulating human motoneuron excitability, readying motoneurons for rapid and sustained activity during periods of high arousal such as stress or fear.


2002 ◽  
Vol 88 (6) ◽  
pp. 3293-3304 ◽  
Author(s):  
Mark M. Rich ◽  
Robert. F. Waldeck ◽  
Linda C. Cork ◽  
Rita J. Balice-Gordon ◽  
Robert E. W. Fyffe ◽  
...  

Hereditary canine spinal muscular atrophy (HCSMA) is an autosomal dominant degenerative disorder of motor neurons. In homozygous animals, motor units produce decreased force output and fail during repetitive activity. Previous studies suggest that decreased efficacy of neuromuscular transmission underlies these abnormalities. To examine this, we recorded muscle fiber endplate currents (EPCs) and found reduced amplitudes and increased failures during nerve stimulation in homozygotes compared with wild-type controls. Comparison of EPC amplitudes with muscle fiber current thresholds indicate that many EPCs from homozygotes fall below threshold for activating muscle fibers but can be raised above threshold following potentiation. To determine whether axonal abnormalities might play a role in causing motor unit dysfunction, we examined the postnatal maturation of axonal conduction velocity in relation to the appearance of tetanic failure. We also examined intracellularly labeled motor neurons for evidence of axonal neurofilament accumulations, which are found in many instances of motor neuron disease including HCSMA. Despite the appearance of tetanic failure between 90 and 120 days, average motor axon conduction velocity increased with age in homozygotes and achieved adult levels. Normal correlations between motor neuron properties (including conduction velocity) and motor unit properties were also observed. Labeled proximal motor axons of several motor neurons that supplied failing motor units exhibited little or no evidence of axonal swellings. We conclude that decreased release of transmitter from motor terminals underlies motor unit dysfunction in HCSMA and that the mechanisms determining the maturation of axonal conduction velocity and the pattern of correlation between motor neuron and motor unit properties do not contribute to the appearance or evolution of motor unit dysfunction.


1988 ◽  
Vol 65 (1) ◽  
pp. 210-217 ◽  
Author(s):  
E. van Lunteren ◽  
N. S. Cherniack ◽  
T. E. Dick

To examine the effects of upper airway negative pressure (UAW NP) afferents on respiratory muscle activity during expiration (TE), diaphragm electromyograms (EMG) and triangularis sterni EMG and single motor unit activity were recorded from supine anesthetized tracheotomized cats while they breathed 100% O2. The period of TE during which the diaphragm was electrically active (TE-1) and the period of TE during which the diaphragm was quiescent (TE-2) were both increased with continuous UAW NP (P less than 0.001 and P less than 0.05, respectively), as was TE-1 as a percent of TE (P less than 0.001). Continuous UAW NP reduced peak triangularis sterni EMG (P less than 0.001) and delayed its expiratory onset (P less than 0.005) but did not alter its duration of firing. Changes in triangularis sterni EMG were due to a combination of complete cessation of motor unit activity (2 of 17 motor units), a reduction in mean motor unit firing frequency (P less than 0.02), and a delay in the expiratory onset of motor unit activity (P less than 0.001). Qualitatively similar results were obtained when UAW NP was applied during inspiration only. We conclude that 1) UAW NP has reciprocal stimulatory and inhibitory influences on diaphragm and triangularis sterni muscle electrical activity, respectively, during expiration, and 2) the reductions in triangularis sterni EMG are due to both motor unit derecruitment and a slowing of motor unit firing frequency.


2007 ◽  
Vol 97 (1) ◽  
pp. 550-556 ◽  
Author(s):  
Tara L. McIsaac ◽  
Andrew J. Fuglevand

An interesting feature of the muscular organization of the human hand is that the main flexors and extensors of the fingers are compartmentalized and give rise to multiple parallel tendons that insert onto all the fingers. Previous studies of motor-unit synchrony in extensor digitorum and flexor digitorum profundus indicated that synaptic input to motor neurons supplying these multitendoned muscles is not uniformly distributed across the entire pool of motor neurons but instead appears to be partially segregated to supply subsets of motor neurons that innervate different muscular compartments. Little is known, however, about the organization of the synaptic inputs to the motor neurons supplying another multitendoned finger muscle, the flexor digitorum superficialis (FDS). Therefore in this study, we estimated the extent of divergence of last-order inputs to FDS motor neurons by measuring the degree of short-term synchrony among motor units within and across compartments of FDS. The degree of synchrony for motor-unit pairs within the same digit compartment was nearly twofold that of pairs of motor units in adjacent compartments and more than fourfold that of pairs in nonadjacent compartments. Therefore like other multitendoned muscles of the hand, last-order synaptic inputs to motor neurons supplying the FDS appear to primarily supply subsets of motor neurons innervating specific finger compartments. Such an organization presumably enables differential activation of separate compartments to facilitate independent movements of the fingers.


Sign in / Sign up

Export Citation Format

Share Document