scholarly journals Oculomotor inhibition covaries with conscious detection

2016 ◽  
Vol 116 (3) ◽  
pp. 1507-1521 ◽  
Author(s):  
Alex L. White ◽  
Martin Rolfs

Saccadic eye movements occur frequently even during attempted fixation, but they halt momentarily when a new stimulus appears. Here, we demonstrate that this rapid, involuntary “oculomotor freezing” reflex is yoked to fluctuations in explicit visual perception. Human observers reported the presence or absence of a brief visual stimulus while we recorded microsaccades, small spontaneous eye movements. We found that microsaccades were reflexively inhibited if and only if the observer reported seeing the stimulus, even when none was present. By applying a novel Bayesian classification technique to patterns of microsaccades on individual trials, we were able to decode the reported state of perception more accurately than the state of the stimulus (present vs. absent). Moreover, explicit perceptual sensitivity and the oculomotor reflex were both susceptible to orientation-specific adaptation. The adaptation effects suggest that the freezing reflex is mediated by signals processed in the visual cortex before reaching oculomotor control centers rather than relying on a direct subcortical route, as some previous research has suggested. We conclude that the reflexive inhibition of microsaccades immediately and inadvertently reveals when the observer becomes aware of a change in the environment. By providing an objective measure of conscious perceptual detection that does not require explicit reports, this finding opens doors to clinical applications and further investigations of perceptual awareness.

2020 ◽  
Vol 124 (3) ◽  
pp. 856-867
Author(s):  
Jing Chen ◽  
Pin Yang ◽  
Zhongting Chen

The Müller–Lyer illusion affects both perception and oculomotor control, but it is unknown whether these effects arise from the same or different underlying mechanisms. We developed a modified version of the Müller–Lyer configuration, which largely reduced the perceptual illusion effect compared with the typical configuration but reduced the saccadic effect to a much less extent. Such difference indicates that influence of the Müller–Lyer configuration on saccadic eye movements is not fully mediated by illusory perception.


2003 ◽  
Vol 12 (5-6) ◽  
pp. 211-221 ◽  
Author(s):  
Mark Shelhamer ◽  
Richard A. Clendaniel ◽  
Dale C. Roberts

Previous studies established that vestibular reflexes can have two adapted states (e.g., gains) simultaneously, and that a context cue (e.g., vertical eye position) can switch between the two states. Our earlier work demonstrated this phenomenon of context-specific adaptation for saccadic eye movements: we asked for gain decrease in one context state and gain increase in another context state, and then determined if a change in the context state would invoke switching between the adapted states. Horizontal and vertical eye position and head orientation could serve, to varying degrees, as cues for switching between two different saccade gains. In the present study, we asked whether gravity magnitude could serve as a context cue: saccade adaptation was performed during parabolic flight, which provides alternating levels of gravitoinertial force (0 g and 1.8 g). Results were less robust than those from ground experiments, but established that different saccade magnitudes could be associated with different gravity levels.


1993 ◽  
Vol 70 (2) ◽  
pp. 576-589 ◽  
Author(s):  
D. P. Munoz ◽  
R. H. Wurtz

1. We tested the hypothesis that a subset of neurons, which we have referred to as fixation cells, located within the rostral pole of the monkey superior colliculus (SC) controls the generation of saccadic eye movements. We altered the activity of these neurons with either electrical stimulation or GABAergic drugs. 2. An increase in the activity of fixation cells in the rostral SC, induced by a train of low-frequency electrical stimulation, delayed the initiation of saccades. With bilateral stimulation the monkey was able to make saccades only after stimulation ceased. 3. Pulses of stimulation delivered during the saccade produced an interruption of the saccade in midflight. The latency to the onset of this perturbation was as short as 12 ms. 4. Injection of the gamma-aminobutyric acid (GABA) antagonist bicuculline into the rostral pole of the SC, which decreases normal GABA inhibition and increases cell activity, increased the latency of saccades to both visual and remembered targets. 5. Injection of the GABA agonist muscimol into the rostral SC, which increases normal GABA inhibition and decreases activity, reduced the latency for saccades to visual targets. The monkey also had difficulty maintaining visual fixation and suppressing unwanted saccades. 6. After muscimol injections, monkeys frequently made very short-latency saccades forming a peak in the saccade latency histogram at < 100 ms. These saccades are similar to express saccades made by normal monkeys. This finding suggests that the fixation cells in the rostral SC are critical for controlling the frequency of express saccades. 7. These results support the hypothesis that fixation cells in the rostral SC inhibit the generation of saccadic eye movements and that they form part of a system of oculomotor control, that of visual fixation.


2016 ◽  
Vol 116 (6) ◽  
pp. 2882-2891 ◽  
Author(s):  
Rebecca M. Krock ◽  
Tirin Moore

Primate vision is continuously disrupted by saccadic eye movements, and yet this disruption goes unperceived. One mechanism thought to reduce perception of this self-generated movement is saccadic suppression, a global loss of visual sensitivity just before, during, and after saccadic eye movements. The frontal eye field (FEF) is a candidate source of neural correlates of saccadic suppression previously observed in visual cortex, because it contributes to the generation of visually guided saccades and modulates visual cortical responses. However, whether the FEF exhibits a perisaccadic reduction in visual sensitivity that could be transmitted to visual cortex is unknown. To determine whether the FEF exhibits a signature of saccadic suppression, we recorded the visual responses of FEF neurons to brief, full-field visual probe stimuli presented during fixation and before onset of saccades directed away from the receptive field in rhesus macaques ( Macaca mulatta). We measured visual sensitivity during both epochs and found that it declines before saccade onset. Visual sensitivity was significantly reduced in visual but not visuomotor neurons. This reduced sensitivity was also present in visual neurons with no movement-related modulation during visually guided saccades and thus occurred independently from movement-related activity. Across the population of visual neurons, sensitivity began declining ∼80 ms before saccade onset. We also observed a similar presaccadic reduction in sensitivity to isoluminant, chromatic stimuli. Our results demonstrate that the signaling of visual information by FEF neurons is reduced during saccade preparation, and thus these neurons exhibit a signature of saccadic suppression.


2013 ◽  
Author(s):  
Sara Spotorno ◽  
Guillaume S. Masson ◽  
Anna Montagnini

Sign in / Sign up

Export Citation Format

Share Document