scholarly journals Regulation of Inhibitory Synapses by Presynaptic D4 Dopamine Receptors in Thalamus

2010 ◽  
Vol 104 (5) ◽  
pp. 2757-2765 ◽  
Author(s):  
Gubbi Govindaiah ◽  
Tongfei Wang ◽  
Martha U. Gillette ◽  
Shane R. Crandall ◽  
Charles L. Cox

Dopamine (DA) receptors are the principal targets of drugs used in the treatment of schizophrenia. Among the five DA receptor subtypes, the D4 subtype is of particular interest because of the relatively high affinity of the atypical neuropleptic clozapine for D4 compared with D2 receptors. GABA-containing neurons in the thalamic reticular nucleus (TRN) and globus pallidus (GP) express D4 receptors. TRN neurons receive GABAergic afferents from globus pallidus (GP), substantia nigra pars reticulata (SNr), and basal forebrain as well as neighboring TRN neuron collaterals. In addition, TRN receives dopaminergic innervations from substantia nigra pars compacta (SNc); however, the role of D4 receptors in neuronal signaling at inhibitory synapses is unknown. Using whole cell recordings from in vitro pallido-thalamic slices, we demonstrate that DA selectively suppresses GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) evoked by GP stimulation. The D2-like receptor (D2,3,4) agonist, quinpirole, and selective D4 receptor agonist, PD168077, mimicked the actions of DA. The suppressive actions of DA and its agonists were associated with alterations in paired pulse ratio and a decrease in the frequency of miniature IPSCs, suggesting a presynaptic site of action. GABAA receptor agonist, muscimol, induced postsynaptic currents in TRN neurons were unaltered by DA or quinpirole, consistent with the presynaptic site of action. Finally, DA agonists did not alter intra-TRN inhibitory signaling. Our data demonstrate that the activation of presynaptic D4 receptors regulates GABA release from GP efferents but not TRN collaterals. This novel and selective action of D4 receptor activation on GP-mediated inhibition may provide insight to potential functional significance of atypical antipsychotic agents. These findings suggest a potential heightened TRN neuron activity in certain neurological conditions, such as schizophrenia and attention deficit hyperactive disorders.

2006 ◽  
Vol 96 (6) ◽  
pp. 2877-2888 ◽  
Author(s):  
Adán Hernández ◽  
Osvaldo Ibáñez-Sandoval ◽  
Arturo Sierra ◽  
René Valdiosera ◽  
Dagoberto Tapia ◽  
...  

The effects of activating dopaminergic D2/3 and D4 receptors during activation of the subthalamic projection to the globus pallidus (GP) were explored in rat brain slices using the whole cell patch-clamp technique. Byocitin labeling and both orthodromic and antidromic activation demonstrated the integrity of some subthalamopallidal connections in in vitro parasagittal brain slices. Excitatory postsynaptic currents (EPSCs) that could be blocked by CNQX and AP5 were evoked onto pallidal neurons by local field stimulation of the subthalamopallidal pathway in the presence of bicuculline. Bath application of dopamine and quinpirole, a dopaminergic D2-class receptor agonist, reduced evoked EPSCs by about 35%. This effect was only partially blocked by sulpiride, a D2/3 receptor antagonist. The sulpiride-sensitive reduction of the subthalamopallidal EPSC was associated with an increase in the paired-pulse ratio (PPR) and a reduction in the frequency but not the mean amplitude of spontaneous EPSCs (sEPSCs), indicative of a presynaptic site of action, which was confirmed by variance–mean analysis. The sulpiride-resistant EPSC reduction was mimicked by PD 168,077 and blocked by L-745,870, selective D4 receptor agonist and antagonist, respectively, suggesting the involvement of D4 receptors. The reduction of EPSCs produced by PD 168,077 was not accompanied by changes in PPR or the frequency of sEPSCs; however, it was accompanied by a reduction in mean sEPSC amplitude, indicative of a postsynaptic site of action. These results show that dopamine modulates subthalamopallidal excitation by presynaptic D2/3 and postsynaptic D4 receptors. The importance of this modulation is discussed.


2014 ◽  
Vol 112 (2) ◽  
pp. 467-479 ◽  
Author(s):  
Adriana Galvan ◽  
Xing Hu ◽  
Karen S. Rommelfanger ◽  
Jean-Francois Pare ◽  
Zafar U. Khan ◽  
...  

The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors.


2011 ◽  
Vol 49 (2) ◽  
pp. 398-402 ◽  
Author(s):  
H. T. Chang ◽  
W. K. Rumbeiha ◽  
J. S. Patterson ◽  
B. Puschner ◽  
A. P. Knight

Chronic ingestion of yellow star thistle ( Centaurea solstitialis) or Russian knapweed ( Acroptilon repens) causes nigropallidal encephalomalacia (NPE) in horses with an abrupt onset of neurologic signs characterized by dystonia of lips and tongue, inability to prehend food, depression, and locomotor deficits. The objectives of this study were to reexamine the pathologic alterations of NPE and to conduct an immunohistochemistry study using antibodies to tyrosine hydroxylase and α-synuclein, to determine whether NPE brains show histopathologic features resembling those in human Parkinson disease. Results confirm that the NPE lesions are located within the substantia nigra pars reticulata, sparing the cell bodies of the dopaminergic neurons in the substantia nigra pars compacta, and in the rostral portion of the globus pallidus, with partial disruption of dopaminergic (tyrosine hydroxylase–positive) fibers passing through the globus pallidus. No abnormal cytoplasmic inclusions like the Lewy bodies of human Parkinson disease were seen in these NPE brains. These findings indicate that equine NPE may serve as a large animal model of environmentally acquired toxic parkinsonism, with clinical phenotype directly attributable to lesions in globus pallidus and substantia nigra pars reticulata rather than to the destruction of dopaminergic neurons.


2002 ◽  
Vol 88 (1) ◽  
pp. 142-151 ◽  
Author(s):  
James M. Brundege ◽  
John T. Williams

The nucleus accumbens (NAcc) is a brain region involved in functions ranging from motivation and reward to feeding and drug addiction. The NAcc is typically divided into two major subdivisions, the shell and the core. The primary output neurons of both of these areas are medium spiny neurons (MSNs), which are quiescent at rest and depend on the relative input of excitatory and inhibitory synapses to determine when they fire action potentials. These synaptic inputs are, in turn, regulated by a number of neurochemical signaling agents that can ultimately influence information processing in the NAcc. The present study characterized the ability of three major signaling pathways to modulate synaptic transmission in NAcc MSNs and compared this modulation across different synapses within the NAcc. The opioid [Met]5enkephalin (ME) inhibited excitatory postsynaptic currents (EPSCs) in shell MSNs, an effect mediated primarily by μ-opioid receptors. Forskolin, an activator of adenylyl cyclase, potentiated shell EPSCs. An analysis of miniature EPSCs indicated a primarily presynaptic site of action, although a smaller postsynaptic effect may have also contributed to the potentiation. Adenosine and an adenosine A1-receptor agonist inhibited shell EPSCs, although no significant tonic inhibition by endogenous adenosine was detected. The effects of these signaling agents were then compared across four different synapses in the NAcc: glutamatergic EPSCs and GABAergic inhibitory postsynaptic currents (IPSCs) in both the core and shell subregions. ME inhibited all four of these synapses but produced a significantly greater inhibition of shell IPSCs than the other synapses. Forskolin produced an increase in transmission at each of the synapses tested. However, analysis of miniature IPSCs in the shell showed no sign of a postsynaptic contribution to this potentiation, in contrast to the shell miniature EPSCs. Tonic inhibition of synaptic currents by endogenous adenosine, which was not observed in shell EPSCs, was clearly present at the other three synapses tested. These results indicate that neuromodulation can vary between the different subregions of the NAcc and between the different synapses within each subregion. This may reflect differences in neuronal interconnections and functional roles between subregions and may contribute to the effects of drugs acting on these systems.


2021 ◽  
Author(s):  
Haruna Tamura ◽  
Ryusuke Nishio ◽  
Nana Saeki ◽  
Misa Katahira ◽  
Hiroki Morioka ◽  
...  

Abstract Parkinson's disease (PD) is characterized by a selective death of nigrostriatal dopaminergic neurons, while the difference in the vulnerability to the death between the substantia nigra pars compacta (SNpc) and the striatum is poorly understood. Here we tested the difference focused on paraquat (PQ)-induced intracellular Zn2+ toxicity via extracellular glutamate accumulation. When PQ was locally injected into the SNpc and the striatum, dopaminergic degeneration was observed in the SNpc, but not in the striatum. Intracellular hydrogen peroxide (H2O2) produced by PQ was increased in both the SNpc and the striatum. In contrast, extracellular glutamate accumulation was observed only in the SNpc and rescued in the presence of N-(p-amylcinnamoyl)anthranilic acid (ACA), a blocker of the transient receptor potential melastatin 2 (TRPM2) cation channels. PQ increased intracellular Zn2+ level in the SNpc, but not in the striatum. The increase was rescued by 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptors. PQ-induced dopaminergic degeneration in the SNpc was rescued by ACA, NASPM, and GBR, a dopamine reuptake inhibitor. The present study indicates intracellular H2O2 produced by PQ, which is taken up through dopamine transporters, is retrogradely transported to presynaptic glutamatergic terminals, activates TRPM2 channels, accumulates glutamate in the extracellular compartment, and induces intracellular Zn2+ dysregulation via Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptor activation, resulting in dopaminergic degeneration in the SNpc. However, H2O2 signaling is not the case in the striatum. Paraquat-induced Zn2+ dysregulation plays a key role for neurodegeneration in the SNpc, but not in the striatum.


2007 ◽  
Vol 26 (3) ◽  
pp. 203-211 ◽  
Author(s):  
S Y Baek ◽  
Y H Kim ◽  
S O Oh ◽  
C-R Lee ◽  
C I Yoo ◽  
...  

We utilized a mice model of Parkinsonism: (1) to evaluate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity; and (2) to evaluate whether manganese (Mn) exposure can affect MPTP-induced neurotoxicity. A 2 × 3 experimental design (MPTP ×± Mn) was as follows: SS, MPTP(-) × Mn(-); SLMn, MPTP(-) × low Mn(+); SHMn, MPTP(-) × high Mn(+); MpS, MPTP(+) × Mn(-); MpLMn, MPTP(+) × low Mn(+); MpHMn, MPTP(+) × high Mn(+). We administered MPTP (30 mg/kg per day) to male C57BL/6 mice intraperitoneally, once a day for 5 days. Subsequently, mice were treated with either 2 or 8 mg/kg of MnCl2.4H2O intraperitoneally, once a day for 3 weeks. Blood and striatal Mn levels were elevated in the Mnexposed groups. The number of tyrosine hydroxylase (TH)-immunoreactive (ir) neurons in the substantia nigra pars compacta were decreased significantly in the MPTP-exposed groups. The densities of TH-ir axon terminals in caudate-putamen (CPU) were significantly decreased in the MPTP-treated groups. However, Mn treatment did not affect MPTP neurotoxicity. The densities of glial fibrillary acidic protein (GFAP)-ir astrocytes in the CPU or globus pallidus were significantly increased in the MPTP-treated groups. Concentrations of dopamine in the striatum were decreased significantly in the MPTP-exposed groups only, but Mn had no effect.


Sign in / Sign up

Export Citation Format

Share Document