scholarly journals Auditory Spatial Tuning at the Crossroads of the Midbrain and Forebrain

2009 ◽  
Vol 102 (3) ◽  
pp. 1472-1482 ◽  
Author(s):  
M. Lucía Pérez ◽  
Sharad J. Shanbhag ◽  
José Luis Peña

The barn owl's midbrain and forebrain contain neurons tuned to sound direction. The spatial receptive fields of these neurons result from sensitivity to combinations of interaural time (ITD) and level (ILD) differences over a broad frequency range. While a map of auditory space has been described in the midbrain, no similar topographic representation has been found in the forebrain. The first nuclei that belong exclusively to the forebrain and midbrain pathways are the thalamic nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. The midbrain projects to the auditory thalamus before sharp spatial receptive fields emerge; although Ov and ICx receive projections from the same midbrain nuclei, they are not directly connected. We compared the spatial tuning in Ov and ICx. Thalamic neurons respond to a broader frequency range and their ITD and ILD tuning varied more across frequency. However, neurons in Ov showed spatial receptive fields as selective as neurons in ICx. Thalamic spatial receptive fields were tuned to frontal and contralateral space and correlated with their tuning to ITD and ILD. Our results indicate that spatial tuning emerges in both pathways by similar combination selectivity to ITD and ILD. However, the midbrain and the thalamus do not appear to repeat exactly the same processing, as indicated by the difference in frequency range and the broader tuning to binaural cues. The differences observed at the initial stages of these sound-localization pathways may reflect diverse functions and coding schemes of midbrain and forebrain.

1999 ◽  
Vol 82 (5) ◽  
pp. 2092-2107 ◽  
Author(s):  
Harumitsu Hirata ◽  
James W. Hu ◽  
David A. Bereiter

Corneal-responsive neurons were recorded extracellularly in two regions of the spinal trigeminal nucleus, subnucleus interpolaris/caudalis (Vi/Vc) and subnucleus caudalis/upper cervical cord (Vc/C1) transition regions, from methohexital-anesthetized male rats. Thirty-nine Vi/Vc and 26 Vc/C1 neurons that responded to mechanical and electrical stimulation of the cornea were examined for convergent cutaneous receptive fields, responses to natural stimulation of the corneal surface by CO2 pulses (0, 30, 60, 80, and 95%), effects of morphine, and projections to the contralateral thalamus. Forty-six percent of mechanically sensitive Vi/Vc neurons and 58% of Vc/C1 neurons were excited by CO2 stimulation. The evoked activity of most cells occurred at 60% CO2 after a delay of 7–22 s. At the Vi/Vc transition three response patterns were seen. Type I cells ( n = 11) displayed an increase in activity with increasing CO2 concentration. Type II cells ( n = 7) displayed a biphasic response, an initial inhibition followed by excitation in which the magnitude of the excitatory phase was dependent on CO2 concentration. A third category of Vi/Vc cells (type III, n = 3) responded to CO2 pulses only after morphine administration (>1.0 mg/kg). At the Vc/C1 transition, all CO2-responsive cells ( n = 15) displayed an increase in firing rates with greater CO2 concentration, similar to the pattern of type I Vi/Vc cells. Comparisons of the effects of CO2 pulses on Vi/Vc type I units, Vi/Vc type II units, and Vc/C1 corneal units revealed no significant differences in threshold intensity, stimulus encoding, or latency to sustained firing. Morphine (0.5–3.5 mg/kg iv) enhanced the CO2-evoked activity of 50% of Vi/Vc neurons tested, whereas all Vc/C1 cells were inhibited in a dose-dependent, naloxone-reversible manner. Stimulation of the contralateral posterior thalamic nucleus antidromically activated 37% of Vc/C1 corneal units; however, no effective sites were found within the ventral posteromedial thalamic nucleus or nucleus submedius. None of the Vi/Vc corneal units tested were antidromically activated from sites within these thalamic regions. Corneal-responsive neurons in the Vi/Vc and Vc/C1 regions likely serve different functions in ocular nociception, a conclusion reflected more by the difference in sensitivity to analgesic drugs and efferent projection targets than by the CO2 stimulus intensity encoding functions. Collectively, the properties of Vc/C1 corneal neurons were consistent with a role in the sensory-discriminative aspects of ocular pain due to chemical irritation. The unique and heterogeneous properties of Vi/Vc corneal neurons suggested involvement in more specialized ocular functions such as reflex control of tear formation or eye blinks or recruitment of antinociceptive control pathways.


1999 ◽  
Vol 82 (5) ◽  
pp. 2197-2209 ◽  
Author(s):  
Joshua I. Gold ◽  
Eric I. Knudsen

Bimodal, auditory-visual neurons in the optic tectum of the barn owl are sharply tuned for sound source location. The auditory receptive fields (RFs) of these neurons are restricted in space primarily as a consequence of their tuning for interaural time differences and interaural level differences across broad ranges of frequencies. In this study, we examined the extent to which frequency-specific features of early auditory experience shape the auditory spatial tuning of these neurons. We manipulated auditory experience by implanting in one ear canal an acoustic filtering device that altered the timing and level of sound reaching the eardrum in a frequency-dependent fashion. We assessed the auditory spatial tuning at individual tectal sites in normal owls and in owls raised with the filtering device. At each site, we measured a family of auditory RFs using broadband sound and narrowband sounds with different center frequencies both with and without the device in place. In normal owls, the narrowband RFs for a given site all included a common region of space that corresponded with the broadband RF and aligned with the site's visual RF. Acute insertion of the filtering device in normal owls shifted the locations of the narrowband RFs away from the visual RF, the magnitude and direction of the shifts depending on the frequency of the stimulus. In contrast, in owls that were raised wearing the device, narrowband and broadband RFs were aligned with visual RFs so long as the device was in the ear but not after it was removed, indicating that auditory spatial tuning had been adaptively altered by experience with the device. The frequency tuning of tectal neurons in device-reared owls was also altered from normal. The results demonstrate that experience during development adaptively modifies the representation of auditory space in the barn owl's optic tectum in a frequency-dependent manner.


2000 ◽  
Vol 83 (2) ◽  
pp. 907-925 ◽  
Author(s):  
Thomas J. Imig ◽  
Nikolai G. Bibikov ◽  
Pierre Poirier ◽  
Frank K. Samson

We tested two hypotheses to determine whether dorsal cochlear nucleus (DCN) neurons are specialized to derive directionality from spectral notches: DCN neurons exhibit greater spectral-dependent directionality than ventral cochlear nucleus (VCN) neurons, and spectral-dependent directionality depends on response minima (nulls) produced by coincidence of best frequency (BF) and spectral-notch center frequency. Single-unit responses to 50-ms noise and tone bursts were recorded in barbiturate-anesthetized cats (BFs: 4–37 kHz). Units were classified using BF tone poststimulus time histograms. Pauser, onset-G (type II interneurons), and some chopper units were recorded from the DCN. Primary-like, onset-CIL (onset other than onset-G), and most choppers in the sample were recorded from the VCN. Many pauser and onset-G units were highly directional to noise. Chopper, onset-CIL, and primary-like units (collectively referred to as C-O-P units) were not. The difference in directionality depends on a monaural mechanism as pausers were more directional to monaural noise than C-O-P units. Contralateral inhibition produced a small increase in pauser directionality to noise simulation but had no effect on directionality of C-O-P units. Pauser and C-O-P units exhibited similar low directionality to BF tone, showing that the difference in noise directionality between groups depends on spectral cues. These results show that spectral-dependent directionality is a DCN specialization. Azimuth functions of highly directional units exhibited response nulls, and there was a linear relationship between BFs in the range of 8–13 kHz and azimuthal locations of nulls. This relationship parallels the known spatial distribution of spectral-notch center frequencies on the horizontal plane. Furthermore spatial receptive fields of pausers show response nulls that follow the expected diagonal trajectory of the spectral notch in this frequency range. These results show that DCN spectral-dependent directionality depends on response nulls produced by coincidence of unit BF and spectral-notch center-frequency.


1998 ◽  
Vol 80 (6) ◽  
pp. 2941-2953 ◽  
Author(s):  
Neil J. Ingham ◽  
Sally K. Thornton ◽  
Damian McCrossan ◽  
Deborah J. Withington

Ingham, Neil J., Sally K. Thornton, Damian McCrossan, and Deborah J. Withington. Neurotransmitter involvement in development and maintenance of the auditory space map in the guinea pig superior colliculus. J. Neurophysiol. 80: 2941–2953, 1998. The mammalian superior colliculus (SC) is a complex area of the midbrain in terms of anatomy, physiology, and neurochemistry. The SC bears representations of the major sensory modalites integrated with a motor output system. It is implicated with saccade generation, in behavioral responses to novel sensory stimuli and receives innervation from diverse regions of the brain using many neurotransmitter classes. Ethylene-vinyl acetate copolymer (Elvax-40W polymer) was used here to deliver chronically neurotransmitter receptor antagonists to the SC of the guinea pig to investigate the potential role played by the major neurotransmitter systems in the collicular representation of auditory space. Slices of polymer containing different drugs were implanted onto the SC of guinea pigs before the development of the SC azimuthal auditory space map, at ∼20 days after birth (DAB). A further group of animals was exposed to aminophosphonopentanoic acid (AP5) at ∼250 DAB. Azimuthal spatial tuning properties of deep layer multiunits of anesthetized guinea pigs were examined ∼20 days after implantation of the Elvax polymer. Broadband noise bursts were presented to the animals under anechoic, free-field conditions. Neuronal responses were used to construct polar plots representative of the auditory spatial multiunit receptive fields (MURFs). Animals exposed to control polymer could develop a map of auditory space in the SC comparable with that seen in unimplanted normal animals. Exposure of the SC of young animals to AP5, 6-cyano-7-nitroquinoxaline-2,3-dione, or atropine, resulted in a reduction in the proportion of spatially tuned responses with an increase in the proportion of broadly tuned responses and a degradation in topographic order. Thus N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors and muscarinic acetylcholine receptors appear to play vital roles in the development of the SC auditory space map. A group of animals exposed to AP5 beginning at ∼250 DAB produced results very similar to those obtained in the young group exposed to AP5. Thus NMDA glutamate receptors also seem to be involved in the maintenance of the SC representation of auditory space in the adult guinea pig. Exposure of the SC of young guinea pigs to γ-aminobutyric acid (GABA) receptor blocking agents produced some but not total disruption of the spatial tuning of auditory MURFs. Receptive fields were large compared with controls, but a significant degree of topographical organization was maintained. GABA receptors may play a role in the development of fine tuning and sharpening of auditory spatial responses in the SC but not necessarily in the generation of topographical order of the these responses.


1996 ◽  
Vol 75 (6) ◽  
pp. 2441-2450 ◽  
Author(s):  
D. D. Rasmusson

1. Single neurons in the ventroposterior lateral thalamic nucleus were studied in 10 anesthetized raccoons, 4 of which had undergone amputation of the fourth digit 4-5 mo before recording. Neurons with receptive fields on the glabrous skin of a forepaw digit were examined in response to electrical stimulation of the “on-focus” digit that contained the neuron's receptive field and stimulation of an adjacent, “off-focus” digit. 2. In normal raccoons all neurons responded to on-focus stimulation with an excitation at a short latency (mean 13 ms), whereas only 63% of the neurons responded to off-focus digit stimulation. The off-focus responses had a longer latency (mean 27.2 ms) and a higher threshold than the on-focus responses (800 and 452 microA, respectively). Only 3 of 32 neurons tested with off-focus stimulation had both a latency and a threshold within the range of on-focus values. Inhibition following the excitation was seen in the majority of neurons with both types of stimulation. 3. In the raccoons with digit removal, the region of the thalamus that had lost its major peripheral input (the “deafferented” region) was distinguished from the normal third and fifth digit regions on the basis of the sequence of neuronal receptive fields within a penetration and receptive field size as described previously. 4. Almost all of the neurons in the deafferented region (91%) were excited by stimulation of one or both adjacent digits. The average latency for these responses was shorter (15.3 ms) and the threshold was lower than was the case with off-focus stimulation in control animals. These values were not significantly different from the responses to on-focus stimulation in the animals with digit amputation. 5. These results confirm that reorganization of sensory pathways can be observed at the thalamic level. In addition to the changes in the somatotopic map that have been shown previously with the use of mechanical stimuli, the present paper demonstrates an improvement in several quantitative measures of single-unit responses. Many of these changes suggest that this reorganization could be explained by an increased effectiveness of preexisting, weak connections from the off-focus digits; however, the increase in the proportion of neurons responding to stimulation of adjacent digits may indicate that sprouting of new connections also occurs.


1999 ◽  
Vol 5 (2) ◽  
pp. 135-140
Author(s):  
Vytautas Stauskis

The paper deals with the differences between the energy created by four different pulsed sound sources, ie a sound gun, a start gun, a toy gun, and a hunting gun. A knowledge of the differences between the maximum energy and the minimum energy, or the signal-noise ratio, is necessary to correctly calculate the frequency dependence of reverberation time. It has been established by investigations that the maximum energy excited by the sound gun is within the frequency range of 250 to 2000 Hz. It decreases by about 28 dB at the low frequencies. The character of change in the energy created by the hunting gun differs from that of the sound gun. There is no change in the maximum energy within the frequency range of 63–100 Hz, whereas afterwards it increases with the increase in frequency but only to the limit of 2000 Hz. In the frequency range of 63–500 Hz, the energy excited by the hunting gun is lower by 15–30 dB than that of the sound gun. As frequency increases the difference is reduced and amounts to 5–10 dB. The maximum energy of the start gun is lower by 4–5 dB than that of the hunting gun in the frequency range of up to 1000 Hz, while afterwards the difference is insignificant. In the frequency range of 125–250 Hz, the maximum energy generated by the sound gun exceeds that generated by the hunting gun by 20 dB, that by the start gun by 25 dB, and that by the toy gun—by as much as 35 dB. The maximum energy emitted by it occupies a wide frequency range of 250 to 2000 Hz. Thus, the sound gun has an advantage over the other three sound sources from the point of view of maximum energy. Up until 500 Hz the character of change in the direct sound energy is similar for all types of sources. The maximum energy of direct sound is also created by the sound gun and it increases along with frequency, the maximum values being reached at 500 Hz and 1000 Hz. The maximum energy of the hunting gun in the frequency range of 125—500 Hz is lower by about 20 dB than that of the sound gun, while the maximum energy of the toy gun is lower by about 25 dB. The maximum of the direct sound energy generated by the hunting gun, the start gun and the toy gun is found at high frequencies, ie at 1000 Hz and 2000 Hz, while the sound gun generates the maximum energy at 500 Hz and 1000 Hz. Thus, the best results are obtained when the energy is emitted by the sound gun. When the sound field is generated by the sound gun, the difference between the maximum energy and the noise level is about 35 dB at 63 Hz, while the use of the hunting gun reduces the difference to about 20–22 dB. The start gun emits only small quantities of low frequencies and is not suitable for room's acoustical analysis at 63 Hz. At the frequency of 80 Hz, the difference between the maximum energy and the noise level makes up about 50 dB, when the sound field is generated by the sound gun, and about 27 dB, when it is generated by the hunting gun. When the start gun is used, the difference between the maximum signal and the noise level is as small as 20 dB, which is not sufficient to make a reverberation time analysis correctly. At the frequency of 100 Hz, the difference of about 55 dB between the maximum energy and the noise level is only achieved by the sound gun. The hunting gun, the start gun and the toy gun create the decrease of about 25 dB, which is not sufficient for the calculation of the reverberation time. At the frequency of 125 Hz, a sufficiently large difference in the sound field decay amounting to about 40 dB is created by the sound gun, the hunting gun and the start gun, though the character of the sound field curve decay of the latter is different from the former two. At 250 Hz, the sound gun produces a field decay difference of almost 60 dB, the hunting gun almost 50 dB, the start gun almost 40 dB, and the toy gun about 45 dB. At 500 Hz, the sound field decay is sufficient when any of the four sound sources is used. The energy difference created by the sound gun is as large as 70 dB, by the hunting gun 50 dB, by the start gun 52 dB, and by the toy gun 48 dB. Such energy differences are sufficient for the analysis of acoustic indicators. At the high frequencies of 1000 to 4000 Hz, all the four sound sources used, even the toy gun, produce a good difference of the sound field decay and in all cases it is possible to analyse the reverberation process at varied intervals of the sound level decay.


2013 ◽  
Vol 552 ◽  
pp. 142-146
Author(s):  
Yong Qiang Gu

Ion Beam Figure (IBF) is believed to be one of the most effective technics that can fabricate lens with nano or even sub-nano accuracy. For different sizes of IBF removal functions, the correct effects in different spatial frequency range are different. Power Spectral Density (PSD) curve can describe surface errors in full spatial frequency range, so it is a very convenient way to evaluate the quality of lens’ surface. In this paper, firstly, the principles of IBF and PSD are introduced briefly; Secondly, IBF removal functions with sizes from 2 mm to 15 mm are generated. A lens with surface error more than PV value 400nm is simulated with different sizes of IBF removal functions by Lucy-Richardson algorithm. Finally, experiments are done by IBF plant. A lens is fabricated by different sizes of removal functions and the fabricate results are tested by interferometer precisely and calculated to PSD curves. By the comparison of these curves, the IBF fabricate effects with different removal sizes are analyzed, which show that the smaller the removal size, the better the removal effect in higher spatial frequency range, but in the meantime, it will take a much longer time. Also the reasons of the difference between theory simulation and actual fabrication result are taken into account, and several influence factors are analyzed.


2001 ◽  
Vol 204 (2) ◽  
pp. 239-248 ◽  
Author(s):  
T. Hariyama ◽  
V.B. Meyer-Rochow ◽  
T. Kawauchi ◽  
Y. Takaku ◽  
Y. Tsukahara

The structural organization of the retinula cells in the eye of Ligia exotica changes diurnally. At night, the microvilli elongate, losing the regular and parallel alignment characteristic of the day condition. Crystalline cones and distal rhabdom tips are not pushed into each other during the day, but at night the rhabdoms protrude into the crystalline cones by up to 5 microm. Screening pigment granules in the retinula cells disperse during the night, but migrate radially towards the vicinity of the rhabdom during the day. No such displacements of the pigment granules of either distal or proximal screening pigment cells were observed. The sensitivity of the eye, monitored by electroretinogram (ERG) recordings, changes diurnally: values at midnight are, on average, 10 times those occurring during the day. However, intracellular recordings from single retinula cells (50 during the day and 50 at night) indicate that the difference between night and day sensitivities is only 2.5-fold. Two-dimensional angular sensitivity curves, indicative of a single unit's spatial sensitivity, had considerably less regular outlines at night than during the day. If based on the 50 % sensitivity level, day and night eyes possessed receptive fields of almost identical width (approximately 2 degrees), but if sensitivities below the 50 % limit were included, then receptive fields at night were significantly more extensive. We suggest that the morphological adaptations and diurnal changes in chromophore content seen in the apposition eye of L. exotica allow this animal to improve its photon capture at night while preserving at least some of the spatial resolving power characteristic of the light-adapted state. This would explain why this animal is capable of performing complex escape behaviours in the presence of predators both in bright and in very dim light.


1980 ◽  
Vol 43 (1) ◽  
pp. 102-117 ◽  
Author(s):  
L. M. Pubols ◽  
M. E. Goldberger

1. Collateral sprouting of L6 dorsal root afferents within the dorsal horn of the L6 spinal cord segment has been shown anatomically to occur following transection of all other lumbosacral dorsal roots in the cat. The present study was performed to examine a possible physiological correlate of that sprouting, namely, an altered somatotopic organization of the dorsal horn at L6. This was evaluated by microelectrode mapping of the L6 dorsal horn in normal cats and in cats with L6 spared, lumbosacral dorsal rhizotomies performed 2 days (subacute spared root) or more than 8 wk (chronic spared root), prior to recording. 2. In normal cats the mediolateral somatotopic sequence of hindlimb representation in the L6 dorsal horn is ventral digits 2 and 3, dorsal digits 2 and 3, dorsal foot, rostral and lateral ankle, lateral leg, lateral thigh, and back. In both subacute and chronic spared-root cats the somatotopic sequence is similar to that of normal cats, but there is a loss of proximal thigh and back representation. This proximal body region is represented at the lateral edge of the dorsal horn in normal animals. 3. There was a partial loss of responsiveness of cells in the dorsal horn in the subacute spared-root group and a partial recovery of responsiveness in the chronic group. In the subacute group punctures exhibiting no responses to tactile input tended to be clustered in the lateral dorsal horn. 4. The lateral one-fourth of the dorsal horn in each animal was analyzed in terms of the percentage of recording loci occurring within it. The percentages of recording loci having receptive fields proximal to, distal to, and spanning the middle of the thigh (proximal, distal, and intermediate RFs) were tabulated for each animal. Subacute animals had a significantly lower-than-normal overall percentage of responsive loci in the lateral dorsal horn, but chronic animals did not. The percentage of distal fields therein was not different for the normal versus the subacute group, signifying that the loss of proximal and intermediate fields was responsible for the difference in overall percentage. Chronic animals, however, had significantly more distal fields than did normals. When all fields having any distal component were compared (i.e., distal and intermediate), the difference between the chronic and normal groups did not reach significance. One possible explanation of these findings is that loci having both proximal and distal RF components are unresponsive 2 days after partial denervation, but recover responsiveness to their spared distal input over an 8-wk period. One possible mechanism mediating these changes is localized sprouting of intact, spared axons. Other mechanisms of functional recovery, such as interneuronal sprouting, denervation supersensitivity, and unmasking of latent synapses, are discussed in relation to these and other data.


1981 ◽  
Vol 45 (3) ◽  
pp. 397-416 ◽  
Author(s):  
J. F. Baker ◽  
S. E. Petersen ◽  
W. T. Newsome ◽  
J. M. Allman

1. The response properties of 354 single neurons in the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) visual areas were studied quantitatively with bar, spot, and random-dot stimuli in chronically implanted owl monkeys with fixed gaze. 2. A directionality index was computed to compare the responses to stimuli in the optimal direction with the responses to the opposing direction of movement. The greater the difference between opposing directions, the higher the index. MT cells had much higher direction indices to moving bars than cells in DL, DM, and M. 3. A tuning index was computed for each cell to compare the responses to bars moving in the optimal direction, or flashed in the optimal orientation, with the responses in other directions or orientations within +/- 90 degrees. Cells in all four areas were more sharply tuned to the orientation of stationary flashed bars than to moving bars, although a few cells (9/92( were unresponsive in the absence of movement. DM cells tended to be more sharply tuned to moving bars than cells in the other areas. 4. Directionality in DM, DL, and MT was relatively unaffected by the use of single-spot stimuli instead of bars; tuning in all four areas was broader to spots than bars. 5. Moving arrays of randomly spaced spots were more strongly excitatory than bar stimuli for many neurons in MT (16/31 cells). These random-dot stimuli were also effective in M, but evoked no response or weak responses from most cells in DM and DL. 6. The best velocities of movement were usually in the range of 10-100 degrees/s, although a few cells (22/227), primarily in MT (14/69 cells), preferred higher velocities. 7. Receptive fields of neurons in all four areas were much larger than striate receptive fields. Eccentricity was positively correlated with receptive-field size (r = 0.62), but was not correlated with directionality index, tuning index, or best velocity. 8. The results support the hypothesis that there are specializations of function among the cortical visual areas.


Sign in / Sign up

Export Citation Format

Share Document