lens surface
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 34)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Ze-xu Chen ◽  
Wan-Nan Jia ◽  
Yong-Xiang Jiang

Aims: To investigate the lens biometric parameters in congenital lens deformities, using a novel technique of swept-source anterior segment optical coherence tomography (SS-ASOCT).Methods: This prospective study included patients with microspherophakia (MSP), coloboma lentis (CL), and posterior lenticonus (PL). For this cohort, 360-degree high-resolution lens images were obtained using the latest SS-ASOCT (CASIA2, Tomey Corp, Nagoya, Japan). The lens biometric parameters were calculated by the CASIA2 built-in software for anterior lens radius (ALR), posterior lens radius (PLR), anteroposterior distance (APD), anterior chamber depth (ACD), equatorial diameter (Eq Dia), rear projection length (RPL), and maximum diameter of the lesion (MDL).Results: This study included two eyes each with MSP and CL and one eye with PL. The lens of MSP was spherical and posteriorly dislocated, with decreased ALR and PLR, Eq Dia, but increased APD. In patients with CL, the coloboma was isolated, bilateral, inferior, and located toward the maldeveloped ciliary body. High astigmatism was mainly lenticular, and this was calculated by the ALR and PLR. Regarding the site of coloboma, a significant decrease in ALR was observed, while the PLR and APD were not affected. The PL eyes had a cone-shaped protrusion of the posterior lens surface with a subtle cataractous region around the apex. An extremely high posterior surface curvature was observed with a mean PLR of 1.67 mm. The RPL and MDL were about 1.80 and 0.4 mm, respectively, which were homogenous at different sections.Conclusions: The CASIA2 is a valuable option for in vivo crystalline lens measurement for congenital lens deformities, enabling the accurate diagnosis and providing illuminating insights into the pathogenesis of MSP, CL, and PL


Author(s):  
Der-Chin Chen ◽  
Ming-Jun Liu ◽  
Jih-Yi Liao ◽  
Feng-Ming Yeh ◽  
Yung-Fu Liu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3477
Author(s):  
Dexing Zhu ◽  
Jian Zhang ◽  
Qiao Xu ◽  
Yaguo Li

A simple and efficient process for fabricating customized aspheric lenses is reported, in which a stereolithographic 3D printer combined with the meniscus equilibrium post-curing technique is employed. Two kinds of UV-curable resins, DentaClear and HEMA, were used for printing aspheric lenses in our experiments. The printed DentaClear lens featured low surface profile deviation of ~74 μm and showed satisfactory optical imaging resolution of 50.80 lp/mm, i.e., 4.92 μm. The surface roughness of the printed lens with DentaClear was measured to be around 2 nm with AFM. The surface roughness was improved as a result of post-curing, which reduced the ripples on printed lens surfaces. In contrast, the printed HEMA lens exhibited a significant stair-stepping effect with a large surface profile deviation of ~150 μm. The ripples were somewhat apparent even if the printed HEMA lens surface was smoothed by means of post-curing. No sharp image can be obtained with the HEMA lens in the resolution testing. The composition of HEMA resin may be the reason for the relatively poor surface quality and optical properties.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 244
Author(s):  
Meng-Ju Lin ◽  
Cheng Hao Wen

A simple, easy, inexpensive, and quick nonsilicon-based micromachining method was developed to manufacture a microlens array. The spherical surface of the microlens was machined using a microshaper mounted on a three-axis vertical computer numerical control (CNC) machine with cutter-path-planning. The results show the machined profiles of microlens agree well with designed profiles. The focus ability of the machined microlens array was verified. The designed and measured focal lengths have average 1.5% error. The results revealed that the focal lengths of micro lens agreed with the designed values. A moderate roughness of microlens surface is obtained by simply polishing. The roughness of the lens surface is 43 nm in feed direction (x-direction) and 56 nm in path interval direction (y-direction). It shows the simple, scalable, and reproducible method to manufacture microlenses by microshaper with cutter-path-planning is feasible.


2021 ◽  
Vol 23 (4) ◽  
pp. 48-55
Author(s):  
Yuri G. Pasternak ◽  
Evgeny A. Rogozin ◽  
Ruslan E. Rogozin ◽  
Sergei M. Fedorov

Cylindrical Lunebeg lenses allow azimuthal scanning in a wide sector of angles. The article discusses a cylindrical Luneberg lens with an out-of-focus parallel printed circuit boards made of thin fiberglass (FR-4) with an etched H-shaped metamaterial structure. The distribution of the electric field in the azimuthal plane is shown when a linearly polarized plane wave is incident on the lens surface parallel to the printed circuit boards. The dependence of the focal length on the frequency is shown. Conclusions are drawn about the effect of dispersion on the focal length. To clarify the value of the focal length, thedirectional characteristics of the antenna system are considered when the focal length is changed. Directional characteristics are investigated when the feed is rotated in the azimuthal plane. The results presented in the article are planned to be used to create broadband Luneberg lenses from metamaterials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. De Lestrange-Anginieur ◽  
C. S. Kee

AbstractThe progressive addition lens (PAL) is a spectacle lens design with progressive refractive power changes across the lens surface to provide sharp vision at different viewing distances for patients with reduced accommodative strength. It has gained in popularity not just for presbyopic patients, but also patients with occupational (office, driving, or digital device) and therapeutic (e.g., myopia control) needs. However, despite the increasing prevalence of astigmatism in adults > 40 years old who rely on PAL correction, no metric is available to reflect the optical variation in PALs with astigmatic prescriptions. Based on recent studies, four novel optical metrics sensitive to variation of refractive power across the lens surface of PALs have been developed. These metrics were used to compare the optical performance of PALs of various prescriptions, designs, and manufacturers. For each lens, the refractive power profile was first measured with a Moire-deflectometry-based instrument.The data was then exported and analyzed using a two-dimensional error map for each of the four metrics. The results revealed significant impacts of astigmatic prescription, providing evidence for the usefulness of these metrics in quantifying the optical performance of PALs for patients with astigmatic prescriptions.


2021 ◽  
Author(s):  
Lunla Udomwech ◽  
Kulwadee karnjana ◽  
Juntamanee Jewboonchua ◽  
Phisut Rattanathamma ◽  
Udomsak Narkkul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document