Influence of Reward Expectation on Visuospatial Processing in Macaque Lateral Prefrontal Cortex

2002 ◽  
Vol 87 (3) ◽  
pp. 1488-1498 ◽  
Author(s):  
Shunsuke Kobayashi ◽  
Johan Lauwereyns ◽  
Masashi Koizumi ◽  
Masamichi Sakagami ◽  
Okihide Hikosaka

The lateral prefrontal cortex (LPFC) has been implicated in visuospatial processing, especially when it is required to hold spatial information during a delay period. It has also been reported that the LPFC receives information about expected reward outcome. However, the interaction between visuospatial processing and reward processing is still unclear because the two types of processing could not be dissociated in conventional delayed response tasks. To examine this, we used a memory-guided saccade task with an asymmetric reward schedule and recorded 228 LPFC neurons. The position of the target cue indicated the spatial location for the following saccade and the color of the target cue indicated the reward outcome for a correct saccade. Activity of LPFC was classified into three main types: S-type activity carried only spatial signals, R-type activity carried only reward signals, and SR-type activity carried both. Therefore only SR-type cells were potentially involved in both visuospatial processing and reward processing. SR-type activity was enhanced (SR+) or depressed (SR−) by the reward expectation. The spatial discriminability as expressed by the transmitted information was improved by reward expectation in SR+ type. In contrast, when reward information was coded by an increase of activity in the reward-absent condition (SR− type), it did not improve the spatial representation. This activity appeared to be involved in gaze fixation. These results extend previous findings suggesting that the LPFC exerts dual influences based on predicted reward outcome: improvement of memory-guided saccades (when reward is expected) and suppression of inappropriate behavior (when reward is not expected).

2002 ◽  
Vol 14 (7) ◽  
pp. 1054-1063 ◽  
Author(s):  
Laura H. F. Barde ◽  
Sharon L. Thompson-Schill

Research on the functional organization of the lateral prefrontal cortex (PFC) in working memory continues to be fairly equivocal between two major frameworks: organization-by-process or organization-by-material. Although there is fairly strong evidence for organization-by-process models from event-related fMRI studies, some investigators argue that the nature of the stimulus material better defines the functional organization of the lateral PFC, particularly in more ventral regions (BA 47/45/44). Specifically, the anterior region of the ventrolateral PFC (BA 47/45) is hypothesized to subserve semantic processing while the posterior region (BA 44) may subserve phonological processing. In the current event-related fMRI study, we directly compared process-related versus material-related organizational principles in a verbal working memory task. Subjects performed a modified delayed response task in which they (1) retained a list of five words or five nonwords during the delay period (“maintenance”), or (2) performed a semantic (size reordering) or phonological (alphabetical reordering) task on the word or nonword lists, respectively (“manipulation”). We did not find evidence during the delay period of our task to support claims of anterior-posterior specializations in the ventrolateral PFC for semantic versus phonological processing. Subjects did, however, display greater neuronal activity during the delay period of manipulation trials than maintenance trials in both the dorsolateral PFC and posterior ventrolateral regions. These data are more consistent with the process model of the organization of lateral PFC in verbal working memory.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander A. Aabedi ◽  
Sofia Kakaizada ◽  
Jacob S. Young ◽  
Jasleen Kaur ◽  
Olivia Wiese ◽  
...  

AbstractLexical retrieval requires selecting and retrieving the most appropriate word from the lexicon to express a desired concept. Few studies have probed lexical retrieval with tasks other than picture naming, and when non-picture naming lexical retrieval tasks have been applied, both convergent and divergent results emerged. The presence of a single construct for auditory and visual processes of lexical retrieval would influence cognitive rehabilitation strategies for patients with aphasia. In this study, we perform support vector regression lesion-symptom mapping using a brain tumor model to test the hypothesis that brain regions specifically involved in lexical retrieval from visual and auditory stimuli represent overlapping neural systems. We find that principal components analysis of language tasks revealed multicollinearity between picture naming, auditory naming, and a validated measure of word finding, implying the existence of redundant cognitive constructs. Nonparametric, multivariate lesion-symptom mapping across participants was used to model accuracies on each of the four language tasks. Lesions within overlapping clusters of 8,333 voxels and 21,512 voxels in the left lateral prefrontal cortex (PFC) were predictive of impaired picture naming and auditory naming, respectively. These data indicate a convergence of heteromodal lexical retrieval within the PFC.


2011 ◽  
Vol 71 ◽  
pp. e381
Author(s):  
Yosuke Saga ◽  
Michiyo Iba ◽  
Jun Tanji ◽  
Eiji Hoshi

2011 ◽  
Vol 70 (4) ◽  
pp. 312-319 ◽  
Author(s):  
Carl Ernst ◽  
Corina Nagy ◽  
Sangyheon Kim ◽  
Jennie P. Yang ◽  
Xiaoming Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document