scholarly journals Desensitization-resistant and -sensitive GPCR-mediated inhibition of GABA release occurs by Ca2+-dependent and -independent mechanisms at a hypothalamic synapse

2016 ◽  
Vol 115 (5) ◽  
pp. 2376-2388 ◽  
Author(s):  
Reagan L. Pennock ◽  
Shane T. Hentges

Whereas the activation of Gαi/o-coupled receptors commonly results in postsynaptic responses that show acute desensitization, the presynaptic inhibition of transmitter release caused by many Gαi/o-coupled receptors is maintained during agonist exposure. However, an exception has been noted where GABAB receptor (GABABR)-mediated inhibition of inhibitory postsynaptic currents (IPSCs) recorded in mouse proopiomelanocortin (POMC) neurons exhibit acute desensitization in ∼25% of experiments. To determine whether differential effector coupling confers sensitivity to desensitization, voltage-clamp recordings were made from POMC neurons to compare the mechanism by which μ-opioid receptors (MORs) and GABABRs inhibit transmitter release. Neither MOR- nor GABABR-mediated inhibition of release relied on the activation of presynaptic K+ channels. Both receptors maintained the ability to inhibit release in the absence of external Ca2+ or in the presence of ionomycin-induced Ca2+ influx, indicating that inhibition of release can occur through a Ca2+-independent mechanism. Replacing Ca2+ with Sr2+ to disrupt G-protein-mediated inhibition of release occurring directly at the release machinery did not alter MOR- or GABAB -mediated inhibition of IPSCs, suggesting that reductions in evoked release can occur through the inhibition of Ca2+ channels. Additionally, both receptors inhibited evoked IPSCs in the presence of selective blockers of N- or P/Q-type Ca2+ channels. Altogether, the results show that MORs and GABABRs can inhibit transmitter release through the inhibition of calcium influx and by direct actions at the release machinery. Furthermore, since both the desensitizing and nondesensitizing presynaptic receptors are similarly coupled, differential effector coupling is unlikely responsible for differential desensitization of the inhibition of release.

2017 ◽  
Vol 13 ◽  
pp. 174480691774003 ◽  
Author(s):  
Tomohisa Mori ◽  
Naoko Kuzumaki ◽  
Takamichi Arima ◽  
Michiko Narita ◽  
Ryunosuke Tateishi ◽  
...  

2003 ◽  
Vol 278 (35) ◽  
pp. 33400-33407 ◽  
Author(s):  
Giu-Jie Feng ◽  
Elaine Kellett ◽  
Carol A. Scorer ◽  
Jonathan Wilde ◽  
Julia H. White ◽  
...  

2018 ◽  
Author(s):  
Yevgen Yudin ◽  
Tibor Rohacs

Opioids exert many of their acute effects through modulating ion channels via Gβγ subunits. Some of their side effects are attributed to β-arrestin recruitment, and several biased agonists that do not activate this pathway have been developed recently. Here we tested the effects of TRV130, PZM21 and herkinorin, three G-protein biased agonists of μ-opioid receptors (μOR), on ion channel targets. Compared to the full μOR agonist DAMGO, all three biased agonists induced smaller activation of G protein-coupled inwardly rectifying potassium channels (GIRK2), and smaller inhibition of Transient Receptor Potential Melastatin (TRPM3) channels. Furthermore, co-application of TRV130 or PZM21, but not herkinorin reduced the effects of DAMGO on both ion channels. CaV2.2 was also inhibited less by PZM21 and TRV130 than by DAMGO. TRV130, PZM21 and herkinorin were also less effective than DAMGO in inducing dissociation of the Gαi /Gβγ complex. We conclude that TRV130, PZM21 are partial agonists of μOR.


1996 ◽  
Vol 75 (5) ◽  
pp. 2017-2028 ◽  
Author(s):  
M. Capogna ◽  
B. H. Gahwiler ◽  
S. M. Thompson

1. Presynaptic inhibition of synaptic transmission in the hippocampus was investigated by comparing the effects of several agonists on miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs). 2. The Ca2+ ionophore ionomycin increased the frequency of mEPSCs and mIPSCs but did not affect their amplitude. Ionomycin-induced release required extracellular Ca2+ and was prevented by pretreatment with botulinum neurotoxin serotype F, like evoked synaptic transmission. Unlike evoked transmission, however, this increase did not involve activation of voltage-dependent Ca2+ channels because it was insensitive to Cd2+. 3. Both the lanthanide gadolinium and alpha-latrotoxin produced increases in the frequency of mEPSCs and mIPSCs, but their actions were independent of extracellular Ca2+. 4. Adenosine, the gamma-aminobutyric acid-B (GABAB) receptor agonist baclofen, and a mu-opioid receptor agonist strongly reduced the frequency of synaptic currents triggered by all three secretagogues. 5. We conclude that activation of these presynaptic receptors can reduce high frequencies of vesicular glutamate and GABA release by directly impairing transmitter exocytosis. Presynaptic inhibition of gadolinium- and alpha-latrotoxin-induced release indicates that this impairment occurs without changes in intraterminal Ca2+ homeostasis and when vesicle fusion is rendered Ca2+ independent, respectively. 6. The inhibition of ionomycin-induced release provides additional evidence for a direct, neurotransmitter receptor-mediated modulation of the proteins underlying vesicular docking or fusion as an important component of presynaptic inhibition of evoked synaptic transmission.


Sign in / Sign up

Export Citation Format

Share Document