Parameter Space Analysis Suggests Multi-Site Plasticity Contributes to Motor Pattern Initiation in Tritonia

2007 ◽  
Vol 98 (4) ◽  
pp. 2382-2398 ◽  
Author(s):  
Robert J. Calin-Jageman ◽  
Mark J. Tunstall ◽  
Brett D. Mensh ◽  
Paul S. Katz ◽  
William N. Frost

This research examines the mechanisms that initiate rhythmic activity in the episodic central pattern generator (CPG) underlying escape swimming in the gastropod mollusk Tritonia diomedea. Activation of the network is triggered by extrinsic excitatory input but also accompanied by intrinsic neuromodulation and the recruitment of additional excitation into the circuit. To examine how these factors influence circuit activation, a detailed simulation of the unmodulated CPG network was constructed from an extensive set of physiological measurements. In this model, extrinsic input alone is insufficient to initiate rhythmic activity, confirming that additional processes are involved in circuit activation. However, incorporating known neuromodulatory and polysynaptic effects into the model still failed to enable rhythmic activity, suggesting that additional circuit features are also required. To delineate the additional activation requirements, a large-scale parameter-space analysis was conducted (∼2 × 106 configurations). The results suggest that initiation of the swim motor pattern requires substantial reconfiguration at multiple sites within the network, especially to recruit ventral swim interneuron-B (VSI) activity and increase coupling between the dorsal swim interneurons (DSIs) and cerebral neuron 2 (C2) coupling. Within the parameter space examined, we observed a tendency for rhythmic activity to be spontaneous and self-sustaining. This suggests that initiation of episodic rhythmic activity may involve temporarily restructuring a nonrhythmic network into a persistent oscillator. In particular, the time course of neuromodulatory effects may control both activation and termination of rhythmic bursting.

1997 ◽  
pp. 931-935 ◽  
Author(s):  
Anders Lansner ◽  
Örjan Ekeberg ◽  
Erik Fransén ◽  
Per Hammarlund ◽  
Tomas Wilhelmsson

Author(s):  
Niklas Wilming ◽  
Peter R Murphy ◽  
Florent Meyniel ◽  
Tobias H Donner

AbstractPerceptual decisions entail the accumulation of sensory evidence for a particular choice towards an action plan. An influential framework holds that sensory cortical areas encode the instantaneous sensory evidence and downstream, action-related regions accumulate this evidence. The large-scale distribution of this computation across the cerebral cortex has remained largely elusive. We developed a regionally-specific magnetoencephalography decoding approach to exhaustively map the dynamics of stimulus- and choice-specific signals across the human cortical surface during a visual decision. Comparison with the evidence accumulation dynamics inferred from behavior enabled us to disentangle stimulus-dependent and endogenous components of choice-predictive activity across the visual cortical hierarchy. The endogenous component was present in primary visual cortex, expressed in a low (< 20 Hz) frequency-band, and its time course tracked, with delay, the build-up of choice-predictive activity in (pre-)motor regions. Our results are consistent with choice-specific cortical feedback signaling in a specific frequency channel during decision formation.


1996 ◽  
Vol 199 (3) ◽  
pp. 569-578
Author(s):  
C Airriess ◽  
B Mcmahon

Changes in cardiac function and arterial haemolymph flow associated with 6 h of emersion were investigated in the crab Cancer magister using an ultrasonic flowmeter. This species is usually found sublittorally but, owing to the large-scale horizontal water movements associated with extreme tides, C. magister may occasionally become stranded on the beach. Laboratory experiments were designed such that the emersion period was typical of those that might be experienced by this crab in its natural environment. The frequency of the heart beat began to decline sharply almost immediately after the start of the experimental emersion period. Cardiac stroke volume fell more gradually. The combined reduction in these two variables led to a maximum decrease in cardiac output of more than 70 % from the control rate. Haemolymph flow through all the arteries originating at the heart, with the exception of the anterior aorta, also declined markedly during emersion. As the water level in the experimental chamber fell below the inhalant branchial openings, a stereotypical, dramatic increase in haemolymph flow through the anterior aorta began and this continued for the duration of the emersion period. The rapid time course of the decline in heart-beat frequency and the increase in haemolymph flow through the anterior aorta suggest a neural mechanism responding to the absence of ventilatory water in the branchial chambers. These responses may be adaptations, respectively, to conserve energy by reducing the minute volume of haemolymph pumped by the heart and to protect the supply of haemolymph to cephalic elements of the central nervous system. The decline in cardiac stroke volume, which occurs more slowly over the emersion period, may be a passive result of the failure to supply sufficient O2 to meet the aerobic demands of the cardiac ganglion.


Author(s):  
Mathis Schmieder ◽  
Henrik Klessig ◽  
Alper Schultze ◽  
Sven Wittig ◽  
Michael Peter ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Elie Bou Assi ◽  
Younes Zerouali ◽  
Manon Robert ◽  
Frederic Lesage ◽  
Philippe Pouliot ◽  
...  

It is increasingly recognized that deep understanding of epileptic seizures requires both localizing and characterizing the functional network of the region where they are initiated, i. e., the epileptic focus. Previous investigations of the epileptogenic focus' functional connectivity have yielded contrasting results, reporting both pathological increases and decreases during resting periods and seizures. In this study, we shifted paradigm to investigate the time course of connectivity in relation to interictal epileptiform discharges. We recruited 35 epileptic patients undergoing intracranial EEG (iEEG) investigation as part of their presurgical evaluation. For each patient, 50 interictal epileptic discharges (IEDs) were marked and iEEG signals were epoched around those markers. Signals were narrow-band filtered and time resolved phase-locking values were computed to track the dynamics of functional connectivity during IEDs. Results show that IEDs are associated with a transient decrease in global functional connectivity, time-locked to the peak of the discharge and specific to the high range of the gamma frequency band. Disruption of the long-range connectivity between the epileptic focus and other brain areas might be an important process for the generation of epileptic activity. Transient desynchronization could be a potential biomarker of the epileptogenic focus since 1) the functional connectivity involving the focus decreases significantly more than the connectivity outside the focus and 2) patients with good surgical outcome appear to have a significantly more disconnected focus than patients with bad outcomes.


1983 ◽  
Vol 49 (6) ◽  
pp. 1410-1427 ◽  
Author(s):  
H. H. Zakon

In the frog, most neurons in the primary (dorsal medullary nucleus, DMN) and secondary (superior olivary nucleus, SO) auditory nuclei have V-shaped tuning curves, almost as narrowly tuned as those recorded in the nerve. Thus, the innervation pattern is such that if more than one excitatory afferent innervates a postsynaptic cell, they must all possess similar best frequencies (BFs). Similarly, binaural cells in these nuclei display matched frequency selectivities when acoustically stimulated via either ear. The VIIIth nerve was unilaterally severed and allowed to regenerate back into the DMN. At various postoperative intervals, extracellular single-unit recordings were made in the SO contralateral to the regenerated nerve, as that nucleus receives its dominant excitatory input (approximately 80%) from the contralateral side. Recordings were also made in the SO of a number of unoperated control animals. Functional reinnervation commenced between 4 and 5 wk postoperatively and by 6 wk, a normal innervation density, as judged by physiological criteria, was achieved. Single units of any best frequency represented within the frog's two auditory papillae could be recorded during earliest reinnervation. In general, the tuning curves of both monaural and binaural cells were V shaped in the 6 wk regenerates. Although many tuning curves were narrowly tuned (Q10dB greater than 1.0) as in unoperated animals, some were very broadly tuned (Q10dB less than 0.5). The mean Q10dB value for all contralaterally excited cells was 1.45 +/- 0.77 (SD), which was significantly lower than that of SO units in unoperated frogs (Q10dB = 1.66 +/- 0.52 (SD)). Binaural cells often had mismatched BFs and tuning curves. By 8 wk after nerve transection, tuning curves were as narrow as in unoperated animals (Q10dB = 1.64 +/- 0.68 (SD)), and the BFs of binaural cells evinced a greater match than at 6 wk. By 12 wk postoperatively, V-shaped tuning curves were still as narrow as in controls (Q10dB = 1.71 +/- 0.69 (SD)), and the tuning curves and BFs of binaural cells were well matched again. At all postoperative intervals, about 10% of the tuning curves in the SO of regenerates were W shaped. This was never seen in normal animals. The return of narrow V-shaped tuning curves in the majority of neurons and the recurrence of matched binaural cells in the SO are interpreted as evidence of specificity for potential postsynaptic targets in the DMN by regenerating auditory afferents.


2019 ◽  
Vol 51 (3) ◽  
pp. 155-166
Author(s):  
Annamaria Painold ◽  
Pascal L. Faber ◽  
Eva Z. Reininghaus ◽  
Sabrina Mörkl ◽  
Anna K. Holl ◽  
...  

Bipolar disorder (BD) is a chronic illness with a relapsing and remitting time course. Relapses are manic or depressive in nature and intermitted by euthymic states. During euthymic states, patients lack the criteria for a manic or depressive diagnosis, but still suffer from impaired cognitive functioning as indicated by difficulties in executive and language-related processing. The present study investigated whether these deficits are reflected by altered intracortical activity in or functional connectivity between brain regions involved in these processes such as the prefrontal and the temporal cortices. Vigilance-controlled resting state EEG of 13 euthymic BD patients and 13 healthy age- and sex-matched controls was analyzed. Head-surface EEG was recomputed into intracortical current density values in 8 frequency bands using standardized low-resolution electromagnetic tomography. Intracortical current densities were averaged in 19 evenly distributed regions of interest (ROIs). Lagged coherences were computed between each pair of ROIs. Source activity and coherence measures between patients and controls were compared (paired t tests). Reductions in temporal cortex activity and in large-scale functional connectivity in patients compared to controls were observed. Activity reductions affected all 8 EEG frequency bands. Functional connectivity reductions affected the delta, theta, alpha-2, beta-2, and gamma band and involved but were not limited to prefrontal and temporal ROIs. The findings show reduced activation of the temporal cortex and reduced coordination between many brain regions in BD euthymia. These activation and connectivity changes may disturb the continuous frontotemporal information flow required for executive and language-related processing, which is impaired in euthymic BD patients.


Sign in / Sign up

Export Citation Format

Share Document