Mechanisms Underlying Type I mGluR-Induced Activation of Lobster Gastric Mill Neurons

2006 ◽  
Vol 96 (6) ◽  
pp. 3378-3388 ◽  
Author(s):  
Rafael Levi ◽  
Allen I. Selverston

In addition to ionotropic effects, glutamate and acetylcholine have metabotropic modulatory effects on many neurons. Here we show that in the stomatogastric ganglion of the lobster, glutamate, one of the main ionotropic neurotransmitters, modulates the excitability of gastric mill neurons. The neurons in this well-studied system produce rhythmic output to a subset of lobster foregut muscles. Recently, metabotropic glutamate receptor (mGluR) agonists were suggested as modulators of the rhythmic output, in addition to the previously described muscarinic modulation by acetylcholine. However, the cellular mechanisms responsible for these effects on the pattern are not known. Using intracellular recording methods and calcium imaging, we show that glutamate has an excitatory effect on specific neurons in the stomatogastric ganglion, which is mediated by mGluRs. Responses to the application of mGluR type I agonists are transient oscillations in the system, probably arising from network interactions. We show that the excitatory effect is sensitive to phospholipase-C and IP3 and is G-protein dependent. The G-protein dependency was demonstrated by GDPβS and GTPγS injection into identified neurons. The depolarizations and oscillations were accompanied by an increase of intracellular Ca2+ levels and correlated Ca2+ oscillations. By using cyclopiazonic acid, an endoreticular Ca2+ uptake inhibitor, we show that some internal calcium release may augment the response, but is not crucial for its production. Interestingly, although Ca2+ concentration increase is typically associated with the phosphoinositide pathway, in the lobster, the Ca2+ concentration increase—either voltage dependent or independent—cannot account for the observed depolarization.

2011 ◽  
Vol 301 (5) ◽  
pp. G835-G845 ◽  
Author(s):  
Bobbi-Jo Lowie ◽  
Xuan-Yu Wang ◽  
Elizabeth J. White ◽  
Jan D. Huizinga

Interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are pacemaker cells of the small intestine, producing the characteristic omnipresent electrical slow waves, which orchestrate peristaltic motor activity and are associated with rhythmic intracellular calcium oscillations. Our objective was to elucidate the origins of the calcium transients. We hypothesized that calcium oscillations in the ICC-MP are primarily regulated by the sarcoplasmic reticulum (SR) calcium release system. With the use of calcium imaging, study of the effect of T-type calcium channel blocker mibefradil revealed that T-type channels did not play a major role in generating the calcium transients. 2-Aminoethoxydiphenyl borate, an inositol 1,4,5 trisphosphate receptor (IP3R) inhibitor, and U73122, a phospholipase C inhibitor, both drastically decreased the frequency of calcium oscillations, suggesting a major role of IP3 and IP3-induced calcium release from the SR. Immunohistochemistry proved the expression of IP3R type I (IP3R-I), but not type II (IP3R-II) and type III (IP3R-III) in ICC-MP, indicating the involvement of the IP3R-I subtype in calcium release from the SR. Cyclopiazonic acid, a SR/endoplasmic reticulum calcium ATPase pump inhibitor, strongly reduced or abolished calcium oscillations. The Na-Ca exchanger (NCX) in reverse mode is likely involved in refilling the SR because the NCX inhibitor KB-R7943 markedly reduced the frequency of calcium oscillations. Immunohistochemistry revealed 100% colocalization of NCX and c-Kit in ICC-MP. Testing a mitochondrial NCX inhibitor, we were unable to show an essential role for mitochondria in regulating calcium oscillations in the ICC-MP. In summary, ongoing IP3 synthesis and IP3-induced calcium release from the SR, via the IP3R-I, are the major drivers of the calcium transients associated with ICC pacemaker activity. This suggests that a biochemical clock intrinsic to ICC determines the pacemaker frequency, which is likely directly linked to kinetics of the IP3-activated SR calcium channel and IP3 metabolism.


2021 ◽  
Vol 22 (6) ◽  
pp. 3241
Author(s):  
Raudah Lazim ◽  
Donghyuk Suh ◽  
Jai Woo Lee ◽  
Thi Ngoc Lan Vu ◽  
Sanghee Yoon ◽  
...  

G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein–protein interactions (PPI).


1984 ◽  
Vol 52 (1) ◽  
pp. 54-73 ◽  
Author(s):  
D. F. Russell ◽  
D. K. Hartline

The properties of neurons in the stomatogastric ganglion (STG) participating in the pattern generator for the gastric mill rhythm were studied by intracellular current injection under several conditions: during ongoing gastric rhythms, in the nonrhythmic isolated STG, after stimulation of the nerve carrying central nervous system (CNS) inputs to the STG, or under Ba2+ or Sr2+. Slow regenerative depolarizations during ongoing rhythms were demonstrated in the anterior median, cardiopyloric, lateral cardiac, gastropyloric, and continuous inhibitor (AM, CP, LC, GP, and CI) neurons according to criteria such as voltage dependency, burst triggering, and termination by brief current pulses, etc. Experiments showed that regenerative-like behavior was not due to synaptic network interactions. The slow regenerative responses were abolished by isolating the stomatogastric ganglion but could be reestablished by stimulating the input nerve. This indicates that certain CNS inputs synaptically induce the regenerative property in specific gastric neurons. Slow regenerative depolarizations were not demonstrable in gastric mill (GM) motor neurons. Their burst oscillations and firing rate were instead proportional to injected current. CNS inputs evoked a prolonged depolarization in GM motor neurons, apparently by a nonregenerative mechanism. All the gastric cells showed prolonged regenerative potentials under 0.5-1.5 mM Ba2+. We conclude that the gastric neurons of the STG can be divided into three types according to their properties: those with a regenerative capability, a repetitively firing type, and a nonregenerative "proportional" type. The cells are strongly influenced by several types of CNS inputs, including "gastric command fibers."


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Serina Yokoyama ◽  
Tatsuo Kawai ◽  
Koichi Yamamoto ◽  
Huang Yibin ◽  
Hiroko Yamamoto ◽  
...  

AbstractThe receptor for advanced glycation end-products (RAGE) and the G protein-coupled angiotensin II (AngII) type I receptor (AT1) play a central role in cardiovascular diseases. It was recently reported that RAGE modifies AngII-mediated AT1 activation via the membrane oligomeric complex of the two receptors. In this study, we investigated the presence of the different directional crosstalk in this phenomenon, that is, the RAGE/AT1 complex plays a role in the signal transduction pathway of RAGE ligands. We generated Chinese hamster ovary (CHO) cells stably expressing RAGE and AT1, mutated AT1, or AT2 receptor. The activation of two types of G protein α-subunit, Gq and Gi, was estimated through the accumulation of inositol monophosphate and the inhibition of forskolin-induced cAMP production, respectively. Rat kidney epithelial cells were used to assess RAGE ligand-induced cellular responses. We determined that RAGE ligands activated Gi, but not Gq, only in cells expressing RAGE and wildtype AT1. The activation was inhibited by an AT1 blocker (ARB) as well as a RAGE inhibitor. ARBs inhibited RAGE ligand-induced ERK phosphorylation, NF-κB activation, and epithelial–mesenchymal transition of rat renal epithelial cells. Our findings suggest that the activation of AT1 plays a central role in RAGE-mediated cellular responses and elucidate the role of a novel molecular mechanism in the development of cardiovascular diseases.


2002 ◽  
Vol 291 (4) ◽  
pp. 744-750 ◽  
Author(s):  
Fatima Lekmine ◽  
Antonella Sassano ◽  
Shahab Uddin ◽  
Beata Majchrzak ◽  
Osamu Miura ◽  
...  

1999 ◽  
Vol 276 (5) ◽  
pp. C1115-C1120 ◽  
Author(s):  
Karl Dreja ◽  
Per Hellstrand

To investigate the Ca2+-dependent plasticity of sarcoplasmic reticulum (SR) function in vascular smooth muscle, transient responses to agents releasing intracellular Ca2+ by either ryanodine (caffeine) ord- myo-inositol 1,4,5-trisphosphate [IP3; produced in response to norepinephrine (NE), 5-hydroxytryptamine (5-HT), arginine vasopressin (AVP)] receptors in rat tail arterial rings were evaluated after 4 days of organ culture. Force transients induced by all agents were increased compared with those induced in fresh rings. Stimulation by 10% FCS during culture further potentiated the force and Ca2+ responses to caffeine (20 mM) but not to NE (10 μM), 5-HT (10 μM), or AVP (0.1 μM). The effect was persistent, and SR capacity was not altered after reversible depletion of stores with cyclopiazonic acid. The effects of serum could be mimicked by culture in depolarizing medium (30 mM K+) and blocked by the addition of verapamil (1 μM) or EGTA (1 mM) to the medium, lowering intracellular Ca2+ concentration ([Ca2+]i) during culture. These results show that modulation of SR function can occur in vitro by a mechanism dependent on long-term levels of basal [Ca2+]iand involving ryanodine- but not IP3 receptor-mediated Ca2+release.


Sign in / Sign up

Export Citation Format

Share Document