Functional Properties of Human Primary Motor Cortex Gamma Oscillations

2010 ◽  
Vol 104 (5) ◽  
pp. 2873-2885 ◽  
Author(s):  
Suresh D. Muthukumaraswamy

Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiments described here a number of properties of these oscillations are elucidated. First, gamma oscillations were reliably localized by MEG in M1 and reached peak amplitude 137 ms after electromyographic onset and were not affected by whether movements were cued or self-paced. Gamma oscillations were found to be stronger for larger movements but were absent during the sustained part of isometric movements, with no finger movement or muscle shortening. During repetitive movement sequences gamma oscillations were greater for the first movement of a sequence. Finally, gamma oscillations were absent during passive shortening of the finger compared with active contractions sharing similar kinematic properties demonstrating that M1 oscillations are not simply related to somatosensory feedback. This combined pattern of results is consistent with gamma oscillations playing a role in a relatively late stage of motor control, encoding information related to limb movement rather than to muscle contraction.

NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S173
Author(s):  
K Jerbi ◽  
H Hui ◽  
D Pantazis ◽  
J-P Lachaux ◽  
O Bertrand ◽  
...  

NeuroImage ◽  
2008 ◽  
Vol 42 (1) ◽  
pp. 332-342 ◽  
Author(s):  
Douglas Cheyne ◽  
Sonya Bells ◽  
Paul Ferrari ◽  
William Gaetz ◽  
Andreea C. Bostan

Author(s):  
David Burke

There is extensive machinery at cerebral and spinal levels to support voluntary movement, but spinal mechanisms are often ignored by clinicians and researchers. For movements of the upper and lower limbs, what the brain commands can be modified or even suppressed completely at spinal level. The corticospinal system is the executive pathway for movement arising largely from primary motor cortex, but movement is not initiated there, and other pathways normally contribute to movement. Greater use of these pathways can allow movement to be restored when the corticospinal system is damaged by, e.g. stroke, but there can be unwanted consequences of this ‘plasticity’. There is an extensive literature on cerebral mechanisms in the control of movement, and an equally large literature on spinal reflex function and the changes that occur during movement, and when pathology results in weakness and/or spasticity.


2020 ◽  
Vol 40 (24) ◽  
pp. 4788-4796 ◽  
Author(s):  
Andrea Guerra ◽  
Francesco Asci ◽  
Valentina D'Onofrio ◽  
Valerio Sveva ◽  
Matteo Bologna ◽  
...  

2014 ◽  
Vol 125 ◽  
pp. S239-S240
Author(s):  
T. Matsumoto ◽  
H. Kirimoto ◽  
S. Miyaguchi ◽  
K. Sugawara ◽  
H. Tamaki ◽  
...  

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Doris D Wang ◽  
Coralie de Hemptinne ◽  
Svjetlana Miocinovic ◽  
Witney Chen ◽  
Jill L Ostrem ◽  
...  

Abstract INTRODUCTION In Parkinson's disease, the emergence of motor dysfunction is thought to be related to an imbalance between antikinetic and prokinetic patterns of oscillatory activity in the motor network. Invasive recordings from the basal ganglia and cortex in surgical patients have suggested that levodopa and therapeutic deep brain stimulation can suppress antikinetic beta band (13-30 Hz) rhythms while promoting prokinetic gamma band (60-90 Hz) rhythms. Surgical ablation of the globus pallidus internus is one of the oldest effective therapies for Parkinson's disease and gives a remarkable immediate relief from rigidity and bradykinesia, but its effects on oscillatory activity in the motor network have not been studied. We characterize the effects of pallidotomy on cortical oscillatory activity in Parkinson's disease patients. METHODS Using a temporary 6-contact lead placed over the sensorimotor cortex in the subdural space, we recorded acute changes in cortical oscillatory activities in 3 Parkinson's disease patients undergoing pallidotomy and compared the results to that of 3 essential tremor patients undergoing thalamotomy. RESULTS In all 3 Parkinson's disease patients, we observed the emergence of an approximately 70 to 80 Hz narrow-band oscillation with effective thermolesion of the pallidum. This gamma oscillatory activity was spatially localized over the primary motor cortex, was minimally affected by voluntary movements, and was not found in the motor cortex of essential tremor patients undergoing thalamotomy. CONCLUSION Our finding suggests that acute lesioning of the pallidum promotes cortical gamma band oscillations. This may represent an important mechanism for alleviating bradykinesia in Parkinson's disease.


2021 ◽  
Vol 145 (1) ◽  
pp. 97-104
Author(s):  
Airi Yoshimoto ◽  
Kotaro Yamashiro ◽  
Takeshi Suzuki ◽  
Yuji Ikegaya ◽  
Nobuyoshi Matsumoto

Sign in / Sign up

Export Citation Format

Share Document