scholarly journals Novel Ca2+-dependent mechanisms regulate spontaneous release at excitatory synapses onto CA1 pyramidal cells

2018 ◽  
Vol 119 (2) ◽  
pp. 597-607 ◽  
Author(s):  
Walter E. Babiec ◽  
Thomas J. O’Dell

Although long thought to simply be a source of synaptic noise, spontaneous, action potential-independent release of neurotransmitter from presynaptic terminals has multiple roles in synaptic function. We explored whether and to what extent the two predominantly proposed mechanisms for explaining spontaneous release, stochastic activation of voltage-gated Ca2+ channels (VGCCs) or activation of Ca2+-sensing receptors (CaSRs) by extracellular Ca2+, played a role in the sensitivity of spontaneous release to the level of extracellular Ca2+ concentration at excitatory synapses at CA1 pyramidal cells of the adult male mouse hippocampus. Blocking VGCCs with Cd2+ had no effect on spontaneous release, ruling out stochastic activation of VGCCs. Although divalent cation agonists of CaSRs, Co2+ and Mg2+, dramatically enhanced miniature excitatory postsynaptic current (mEPSC) frequency, potent positive and negative allosteric modulators of CaSRs had no effect. Moreover, immunoblot analysis of hippocampal lysates failed to detect CaSR expression, ruling out the CaSR. Instead, the increase in mEPSC frequency induced by Co2+ and Mg2+ was mimicked by lowering postsynaptic Ca2+ levels with BAPTA. Together, our results suggest that a reduction in intracellular Ca2+ may trigger a homeostatic-like compensatory response that upregulates spontaneous transmission at excitatory synapses onto CA1 pyramidal cells in the adult hippocampus. NEW & NOTEWORTHY We show that the predominant theories for explaining the regulation of spontaneous, action potential-independent synaptic release do not explain the sensitivity of this type of synaptic transmission to external Ca2+ concentration at excitatory synapses onto hippocampal CA1 pyramidal cells. In addition, our data indicate that intracellular Ca2+ levels in CA1 pyramidal cells regulate spontaneous release, suggesting that excitatory synapses onto CA1 pyramidal cells may express a novel, rapid form of homeostatic plasticity.

2002 ◽  
Vol 87 (3) ◽  
pp. 1395-1403 ◽  
Author(s):  
Ayako M. Watabe ◽  
Holly J. Carlisle ◽  
Thomas J. O'Dell

Activation of metabotropic glutamate receptors (mGluRs) with the group I mGluR selective agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) induces a long-term depression (LTD) of excitatory synaptic transmission in the CA1 region of the hippocampus. Here we investigated the potential roles of pre- and postsynaptic processes in the DHPG-induced LTD at excitatory synapses onto hippocampal pyramidal cells in the mouse hippocampus. Activation of mGluRs with DHPG, but not ACPD, induced LTD at both Schaffer collateral/commissural fiber synapses onto CA1 pyramidal cells and at associational/commissural fiber synapses onto CA3 pyramidal cells. DHPG-induced LTD was blocked when the G-protein inhibitor guanosine-5′- O-(2-thiodiphosphate) was selectively delivered into postsynaptic CA1 pyramidal cells via an intracellular recording electrode, suggesting that DHPG depresses synaptic transmission through a postsynaptic, GTP-dependent signaling pathway. The effects of DHPG were also strongly modulated, however, by experimental manipulations that altered presynaptic calcium influx. In these experiments, we found that elevating extracellular Ca2+ concentrations ([Ca2+]o) to 6 mM almost completely blocked the effects of DHPG, whereas lowering [Ca2+]o to 1 mM significantly enhanced the ability of DHPG to depress synaptic transmission. Enhancing Ca2+ influx by prolonging action potential duration with bath applications of the K+ channel blocker 4-aminopyridine (4-AP) also strongly reduced the effects of DHPG in the presence of normal [Ca2+]o (2 mM). Although these findings indicate that alterations in Ca2+-dependent signaling processes strongly regulate the effects of DHPG on synaptic transmission, they do not distinguish between potential pre- versus postsynaptic sites of action. We found, however, that while inhibiting both pre- and postsynaptic K+ channels with bath-applied 4-AP blocked the effects of DHPG; inhibition of postsynaptic K+channels alone with intracellular Cs+ and TEA had no effect on the ability of DHPG to inhibit synaptic transmission. This suggests that presynaptic changes in transmitter release contribute to the depression of synaptic transmission by DHPG. Consistent with this, DHPG induced a persistent depression of both AMPA and N-methyl-d-aspartate receptor-mediated components of excitatory postsynaptic currents in voltage-clamped pyramidal cells. Together our results suggest that activation of postsynaptic mGluRs suppresses transmission at excitatory synapses onto CA1 pyramidal cells through presynaptic effects on transmitter release.


1998 ◽  
Vol 79 (2) ◽  
pp. 1124-1126 ◽  
Author(s):  
Qiang X. Chen ◽  
Katherine L. Perkins ◽  
Robert K. S. Wong

Chen, Qiang X., Katherine L. Perkins, and Robert K. S. Wong. Zn2+ blocks the NMDA- and Ca2+-triggered postexposure current I pe in hippocampal pyramidal cells. J. Neurophysiol. 79: 1124–1126, 1998. Whole cell voltage-clamp recordings from acutely isolated hippocampal CA1 pyramidal cells from adult guinea pigs were used to evaluate divalent cations as possible blockers of the postexposure current ( I pe). I pe is a cation current that is triggered by the rise in intracellular Ca2+ concentration that occurs after the application of a toxic level of N-methyl-d-aspartate (NMDA). Once triggered, I pe continues to grow until death of the neuron occurs. I pe may be a critical link between transient NMDA exposure and cell death. I pe was blocked by micromolar concentrations of Zn2+. The Zn2+ effect had an IC50 of 64 μM and saturated at 500 μM. Prolonged Zn2+ block of I pe revealed that the maintenance of a steady I pe is not dependent on I pe-mediated Ca2+ influx but that the continuous growth in I pe is dependent on I pe-mediated Ca2+ influx. The availability of an effective blocker of I pe should facilitate the investigation of the intracellular activation pathway of I pe and the role of I pe in neuronal death.


Neuroscience ◽  
2001 ◽  
Vol 102 (3) ◽  
pp. 527-540 ◽  
Author(s):  
M Megı́as ◽  
Zs Emri ◽  
T.F Freund ◽  
A.I Gulyás

2019 ◽  
Author(s):  
Aundrea F. Bartley ◽  
Kavitha Abiraman ◽  
Luke T. Stewart ◽  
Mohammed Iqbal Hossain ◽  
David M Gahan ◽  
...  

AbstractOptogenetics is widely used in neuroscience to control neural circuits. However, non-invasive methods for light delivery in brain are needed to avoid physical damage caused by current methods. One potential strategy could employ x-ray activation of radioluminescent particles (RPLs), enabling localized light generation within the brain. RPLs composed of inorganic scintillators can emit light at various wavelengths depending upon composition. Cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light in response to x-ray or UV stimulation, could potentially be used to control neural circuits through activation of channelrhodopsin-2 (ChR2), a light-gated cation channel. Whether inorganic scintillators themselves negatively impact neuronal processes and synaptic function is unknown, and was investigated here using cellular, molecular, and electrophysiological approaches. As proof of principle, we applied UV stimulation to 4 μm LSO:Ce particles during whole-cell recording of CA1 pyramidal cells in acutely prepared hippocampal slices from mice that expressed ChR2 in glutamatergic neurons. We observed an increase in frequency and amplitude of spontaneous excitatory postsynaptic currents (EPSCs), indicating UV activation of ChR2 and excitation of neurons. Importantly, we found that LSO:Ce particles have no effect on survival of primary mouse cortical neurons, even after 24 hours of exposure. In extracellular dendritic field potential recordings, we observed no change in strength of basal glutamatergic transmission up to 3 hours of exposure to LSO:Ce microparticles. However, there was a slight decrease in the frequency of spontaneous EPSCs in whole-cell voltage-clamp recordings from CA1 pyramidal cells, with no change in current amplitudes. No changes in the amplitude or frequency of spontaneous inhibitory postsynaptic currents (IPSCs) were observed. Finally, long term potentiation (LTP), a synaptic modification believed to underlie learning and memory and a robust measure of synaptic integrity, was successfully induced, although the magnitude was slightly reduced. Together, these results show LSO:Ce particles are biocompatible even though there are modest effects on baseline synaptic function and long-term synaptic plasticity. Importantly, we show that light emitted from LSO:Ce particles is able to activate ChR2 and modify synaptic function. Therefore, LSO:Ce inorganic scintillators are potentially viable for use as a new light delivery system for optogenetics.


1998 ◽  
Vol 79 (2) ◽  
pp. 659-669 ◽  
Author(s):  
F.E.N. Le Beau ◽  
B. E. Alger

Le Beau, F.E.N. and B. E. Alger. Transient suppression ofGABAA-receptor–mediated IPSPs after epileptiform burst discharges in CA1 pyramidal cells. J. Neurophysiol. 79: 659–669, 1998. Epileptiform burst discharges were elicited in CA1 hippocampal pyramidal cells in the slice preparation by perfusion with Mg2+-free saline. Intracellular recordings revealed paroxysmal depolarization shifts (PDSs) that either occurred spontaneously or were evoked by stimulation of Schaffer collaterals. These bursts involved activation of N-methyl-d-aspartate receptors because burst discharges were reduced or abolished by dl-2-amino-5-phosphonovaleric acid. Bath application of carbachol caused an increase in spontaneous activity that was predominantly due to γ-aminobutyric acid-A-receptor–mediated spontaneous inhibitory postsynaptic potentials (sIPSPs). A marked reduction in sIPSPs (31%) was observed after each epileptiform burst discharge, which subsequently recovered to preburst levels after ∼4–20 s. This sIPSP suppression was not associated with any change in postsynaptic membrane conductance. A suppression of sIPSPs also was seen after burst discharges evoked by brief (100–200 ms) depolarizing current pulses. N-ethylmaleimide, which blocks pertussis-toxin–sensitive G proteins, significantly reduced the suppression of sIPSPs seen after a burst response. When increases in intracellular Ca2+ were buffered by intracellular injection of ethylene glycol bis(β-aminoethyl)ether- N,N,N′,N′-tetraacetic acid, the sIPSP suppression seen after a single spontaneous or evoked burst discharge was abolished. Although we cannot exclude other Ca2+-dependent mechanisms, this suppression of sIPSPs shared many of the characteristics of depolarization-induced suppression of inhibition (DSI) in that it involved activation of G proteins and was dependent on increases in intracellular calcium. These findings suggest that a DSI-like process may be activated by the endogenous burst firing of CA1 pyramidal neurons.


Sign in / Sign up

Export Citation Format

Share Document