Zn2+ Blocks the NMDA- and Ca2+-Triggered Postexposure Current I pe in Hippocampal Pyramidal Cells

1998 ◽  
Vol 79 (2) ◽  
pp. 1124-1126 ◽  
Author(s):  
Qiang X. Chen ◽  
Katherine L. Perkins ◽  
Robert K. S. Wong

Chen, Qiang X., Katherine L. Perkins, and Robert K. S. Wong. Zn2+ blocks the NMDA- and Ca2+-triggered postexposure current I pe in hippocampal pyramidal cells. J. Neurophysiol. 79: 1124–1126, 1998. Whole cell voltage-clamp recordings from acutely isolated hippocampal CA1 pyramidal cells from adult guinea pigs were used to evaluate divalent cations as possible blockers of the postexposure current ( I pe). I pe is a cation current that is triggered by the rise in intracellular Ca2+ concentration that occurs after the application of a toxic level of N-methyl-d-aspartate (NMDA). Once triggered, I pe continues to grow until death of the neuron occurs. I pe may be a critical link between transient NMDA exposure and cell death. I pe was blocked by micromolar concentrations of Zn2+. The Zn2+ effect had an IC50 of 64 μM and saturated at 500 μM. Prolonged Zn2+ block of I pe revealed that the maintenance of a steady I pe is not dependent on I pe-mediated Ca2+ influx but that the continuous growth in I pe is dependent on I pe-mediated Ca2+ influx. The availability of an effective blocker of I pe should facilitate the investigation of the intracellular activation pathway of I pe and the role of I pe in neuronal death.

2020 ◽  
Vol 123 (5) ◽  
pp. 1671-1681
Author(s):  
Miriam S. Nokia ◽  
Tomi Waselius ◽  
Joonas Sahramäki ◽  
Markku Penttonen

We studied hippocampal sharp-wave ripples and theta and CA1 pyramidal cell activity during trace eyeblink conditioning in rabbits. Conditioning trials suppressed ripples while increasing theta for a period of several seconds. A quarter of the cells increased firing in response to the conditioned stimulus and fired extensively during endogenous theta as well as ripples. The role of endogenous theta epochs in off-line memory consolidation should be studied further.


1993 ◽  
Vol 265 (6) ◽  
pp. C1463-C1471 ◽  
Author(s):  
H. K. Lee ◽  
O. Bayguinov ◽  
K. M. Sanders

The mechanism of muscarinic excitation was studied in colonic muscle strips and isolated cells. In whole cell voltage-clamp studies performed at 33 degrees C utilizing the permeabilized patch technique, acetylcholine (ACh) reduced an L-type Ca2+ current. With K+ currents blocked, depolarization to positive potentials in the presence of ACh elicited outward current. Difference currents showed that ACh activated a voltage-dependent current that reversed at about -8 mV; this current (IACh) had properties similar to the nonselective cation conductance found in other smooth muscle cells. The reversal potential of IACh shifted toward negative potentials when external Na+ was reduced, and the inward current elicited at -70 mV decreased when external Na+ was reduced. IACh was facilitated by internal Ca2+. After the current was activated at a holding potential of -70 mV, depolarizations to -30 to 0 mV elicited influx of Ca2+ via voltage-dependent Ca2+ channels. After repolarization to the holding potential, a large inward tail current was observed. IACh was blocked by Ni2+ and Cd2+ at concentrations of 100 microM or less. Quinine (0.5 mM) also blocked IACh. With the use of the sensitivity of IACh to reduced external Na+ and divalent cations, the role of IACh in responses of intact muscles to ACh was examined. When external Na+ was reduced, ACh failed to increase slow-wave duration, and Ni2+ (50 microM) reversed the depolarization caused by ACh. These data suggest an important role for IACh in the electrical responses of colonic muscles. The contribution of IACh appears to prolong slow waves, which would allow greater entry of Ca2+ and increased force development.


1995 ◽  
Vol 73 (2) ◽  
pp. 911-915 ◽  
Author(s):  
K. L. Perkins ◽  
R. K. Wong

1. Whole cell voltage-clamp recordings (access resistance < or = 12 M omega) from CA1 pyramidal cells in the guinea pig hippocampal slice revealed a hyperpolarization-activated inward current with an inward tail upon repolarization. The current activation range extended from approximately -50 mV to -130 mV, with half-activation at -86 mV. This current was identified as the q current (Iq). 2. Intracellular QX-314 (5 or 10 mM), a quaternary derivative of lidocaine, blocked Iq completely throughout its activation range. 3. There is a growing realization that Iq may be responsible for the pacemaker depolarization in cells that display rhythmic calcium spikes. Because QX-314 blocks Iq completely, it could be used to test whether Iq is essential to this oscillatory activity.


2020 ◽  
Author(s):  
Karen A Bell ◽  
Rayne Delong ◽  
Priyodarshan Goswamee ◽  
A Rory McQuiston

Abstract The entorhinal cortex alvear pathway is a major excitatory input to hippocampal CA1, yet nothing is known about its physiological impact. We investigated the alvear pathway projection and innervation of neurons in CA1 using optogenetics and whole cell patch clamp methods in transgenic mouse brain slices. Using this approach, we show that the medial entorhinal cortical alvear inputs onto CA1 pyramidal cells (PCs) and interneurons with cell bodies located in stratum oriens were monosynaptic, had low release probability, and were mediated by glutamate receptors. Optogenetic theta burst stimulation was unable to elicit suprathreshold activation of CA1 PCs but was capable of activating CA1 interneurons. However, different subtypes of interneurons were not equally affected. Higher burst action potential frequencies were observed in parvalbumin-expressing interneurons relative to vasoactive-intestinal peptide-expressing or a subset of oriens lacunosum-moleculare (O-LM) interneurons. Furthermore, alvear excitatory synaptic responses were observed in greater than 70% of PV and VIP interneurons and less than 20% of O-LM cells. Finally, greater than 50% of theta burst-driven inhibitory postsynaptic current amplitudes in CA1 PCs were inhibited by optogenetic suppression of PV interneurons. Therefore, our data suggest that the alvear pathway primarily affects hippocampal CA1 function through feedforward inhibition of select interneuron subtypes.


Epilepsia ◽  
2003 ◽  
Vol 44 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Rainer Surges ◽  
Thomas M. Freiman ◽  
Thomas J. Feuerstein

1997 ◽  
Vol 07 (01) ◽  
pp. 187-198 ◽  
Author(s):  
Haijian Sun ◽  
Lin Liu ◽  
Chunhua Feng ◽  
Aike Guo

The spatiotemporal dynamics of the hippocampus is studied. We first propose a fractal algorithm to model the growth of hippocampal CA1 pyramidal cells, together with an avalanche model for information transmission. Then the optical records of an epileptic focus in the hippocampus are analyzed and simulated. These processes indicate that the hippocampus normally stays in self-organized criticality with a harmonious spatiotemporal behavioral pattern, that is, showing 1/f fluctuation and power law distribution. In case of a neurological insult, the hippocampal system may step into supercriticality and initiate epilepsy.


Sign in / Sign up

Export Citation Format

Share Document