scholarly journals Spectral Responses in Zebrafish Horizontal Cells Include a Tetraphasic Response and a Novel UV-Dominated Triphasic Response

2010 ◽  
Vol 104 (5) ◽  
pp. 2407-2422 ◽  
Author(s):  
Victoria P. Connaughton ◽  
Ralph Nelson

Zebrafish are tetrachromats with red (R, 570 nm), green (G, 480 nm), blue (B, 415 nm), and UV (U, 362 nm) cones. Although neurons in other cyprinid retinas are rich in color processing neural circuitry, spectral responses of individual neurons in zebrafish retina, a genetic model for vertebrate color vision, are yet to be studied. Using dye-filled sharp microelectrodes, horizontal cell voltage responses to light stimuli of different wavelengths and irradiances were recorded in a superfused eyecup. Spectral properties were assessed both qualitatively and quantitatively. Six spectral classes of horizontal cell were distinguished. Two monophasic response types (L1 and L2) hyperpolarized at all wavelengths. L1 sensitivities peaked at 493 nm, near the G cone absorbance maximum. Modeled spectra suggest equally weighted inputs from both R and G cones and, in addition, a “hidden opponency” from blue cones. These were classified as R−/G−/(b+). L2 sensitivities were maximal at 563 nm near the R cone absorbance peak; modeled spectra were dominated by R cones, with lesser G cone contributions. B and UV cone signals were small or absent. These are R−/g−. Four chromatic (C-type) horizontal cells were either depolarized (+) or hyperpolarized (−) depending on stimulus wavelength. These types are biphasic (R+/G−/B−) with peak excitation at 467 nm, between G and B cone absorbance peaks, UV triphasic (r−/G+/U−) with peak excitation at 362 nm similar to UV cones, and blue triphasic (r−/G+/B−/u−) and blue tetraphasic (r−/G+/B−/u+), with peak excitation at 409 and 411 nm, respectively, similar to B cones. UV triphasic and blue tetraphasic horizontal cell spectral responses are unique and were not anticipated in previous models of distal color circuitry in cyprinids.

1990 ◽  
Vol 64 (1) ◽  
pp. 248-261 ◽  
Author(s):  
R. L. Winslow ◽  
S. Ma

1. We have previously presented a model of horizontal-cell soma isolated from fish retina. The model consists of a synaptic conductance representing input from photoreceptors in parallel with voltage-dependent membrane currents. Membrane-current models are based on I-V curves measured in isolated fish horizontal cells. Bifurcation theory was used to analyze model properties. The major findings of this study were 1) the inward Ca2+ current must be inactivated to account for horizontal-cell resting potentials and hyperpolarizing responses to light stimuli in a background of dark, and 2) the synaptic conductance controls the bifurcation structure of the model, with bistable behavior occurring at small and monostable behavior occurring at larger values of the synaptic conductance. The synaptic conductance at the point of transition from bistable to monostable behavior corresponds to the activation of as few as 100 synaptic channels. Thus tonic synaptic input from photoreceptors and inactivation of the inward Ca2+ current act to “linearize” responses of isolated horizontal-cell models. 2. The model described in this paper extends these analyses to large networks of horizontal cells in which each cell is coupled resistively to its nearest neighbors and is modeled with the use of the full complement of nonlinear membrane currents. Network responses to arbitrary patterns of conductance change (simulating inputs from photoreceptors), current-, or voltage-clamp stimuli are computed using the Newton iteration. The Newton descent direction is computed using either conjugate gradient (CG) or preconditioned CG algorithms. 3. An analysis of network stability properties is performed. Network I-V curves are computed by voltage-clamping the center node and computing the current required to maintain the clamp voltage. Computations are performed on networks of model cells in which the Ca2+ current is fully activated and the synaptic conductance is zero, thus making each cell as nonlinear as possible. Coupling conductance values slightly greater than 100 pS provide a current shunt sufficient to prevent the generation of Ca2+ action potentials in the network. This coupling conductance corresponds to the conductance of as few as two gap-junction channels and is more than two orders of magnitude less than the coupling known to exist between pairs of cultured horizontal cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 16 (5) ◽  
pp. 801-809 ◽  
Author(s):  
SILKE HAVERKAMP ◽  
WOLFGANG MÖCKEL ◽  
JOSEF AMMERMÜLLER

Electrophysiologically, color-opponent retinal bipolar cells respond with opposite polarities to stimulation with different wavelengths of light. The origin of these different polarities in the same bipolar cell has always been a mystery. Here we show that an intracellularly recorded and HRP-injected, red-ON, blue/green-OFF bipolar cell of the turtle retina made invaginating (ribbon associated) synapses exclusively with L-cones. Non-invaginating synapses resembling wide-cleft basal junctions were made exclusively with M-cones. Input from S-cones was not seen. From these results we suggest sign-inverting transmission from L-cones at invaginating synapses via metabotropic glutamate receptors, and sign-conserving transmission from M-cones at wide-cleft basal junctions via ionotropic receptors. To explain the pronounced blue sensitivity of the bipolar cell, computer simulations were performed using a sign-conserving input from a yellow/blue chromaticity-type (H3) horizontal cell. The response properties of the red-ON, blue/green-OFF bipolar cell could be quantitatively reproduced by this means. The simulation also explained the asymmetry in L- and M-cone inputs to the bipolar cell as found in the ultrastructural analysis and assigned a putative role to H3 horizontal cells in color processing in the turtle retina.


1999 ◽  
Vol 16 (5) ◽  
pp. 811-818 ◽  
Author(s):  
CHENGBIAO LU ◽  
DAO-QI ZHANG ◽  
DOUGLAS G. McMAHON

Electrical coupling between H2 horizontal cell pairs isolated from the hybrid bass retina was studied using dual whole-cell, voltage-clamp technique. Voltage-dependent inactivation of junctional currents in response to steps in transjunctional voltage (Vj) over a range of ±100 mV was characterized for 89 cell pairs. Approximately one-quarter of the pairs exhibited strongly voltage-dependent junctions (>50% reduction in junctional current at ±100 mV), another quarter of the pairs exhibited voltage-independent junctional current (<5% reduction at ±100 mV), and the remainder of the pairs exhibited intermediate values for voltage inactivation. We focused on further characterizing the Vj-independent junctions of horizontal cells, which have not been described previously in detail. When Lucifer Yellow dye was included in one recording pipette, pairs exhibiting Vj-independent coupling showed no (9/12), or limited (3/12), passage of dye. Vj-independent coupling was markedly less sensitive to the modulators SNP (100–300 μM, −9% reduction in coupling) and dopamine (100–300 μM, −6%) than were Vj-dependent junctions (−45% and −44%). However, simultaneous application of both SNP and dopamine significantly reduced Vj-independent coupling (−56%). Both Vj-independent and Vj-dependent junctions were blocked by DMSO (1–2%), but Vj-independent junctions were not blocked by heptanol. Single-channel junctional conductances of Vj-independent junctions range from 112–180 pS, versus 50–60 pS for Vj-dependent junctions. The results reveal that Vj-independent coupling in a subpopulation of horizontal cells from the hybrid bass retina is mediated by cellular junctions with physiological and pharmacological characteristics distinct from those previously described in fish horizontal cells.


2001 ◽  
Vol 18 (5) ◽  
pp. 759-765 ◽  
Author(s):  
Y. ZANA ◽  
D.F. VENTURA ◽  
J.M. de SOUZA ◽  
R.D. DeVOE

Recent physiological experiments support behavioral and morphological evidence for a fourth type of cone in the turtle retina, maximally sensitive in the ultraviolet (UV). This cone type has not yet been included in the models proposed for connectivity between cones and horizontal cells. In this study, we examined the inputs of UV, S, M, and L cones to horizontal cells. We used the high-resolution Dynamic Constant Response Method to measure the spectral sensitivity of horizontal cells without background light and after adaptation to UV, blue (B), green (G), and red (R) light. We concluded the following: (1) Tetrachromatic input to a Y/B horizontal cell was identified. The spectral-sensitivity curves of the cell in three of the adaptation conditions were well represented by L-, M-, and S-cone functions. Adaptation to blue light revealed a peak at 372 nm, the same wavelength location as that determined behaviorally in the turtle. A porphyropsin template could be closely fitted to the sensitivity band in that region, strong evidence for input from a UV cone. (2) The spectral-sensitivity functions of R/G horizontal cells were well represented by the L- and M-cone functions. There was no indication of UV- or S-cone inputs into these cells. (3) The spectral sensitivities of the monophasic horizontal cells were dominated by the L cone. However, the shape of the spectral-sensitivity function depended on the background wavelength, indicating secondary M-cone input. Connectivity models of the outer retina that predict input from all cone types are supported by the finding of tetrachromatic input into Y/B horizontal cells. In contrast, we did not find tetrachromatic input to R/G and monophasic horizontal cells. Chromatic adaptation revealed the spectral-sensitivity function of the turtle UV cone peaking at 372 nm.


1993 ◽  
Vol 10 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Haohua Qian ◽  
Robert Paul Malchow ◽  
Harris Ripps

AbstractWhole-cell voltage-clamp recordings were used to examine the unusual pharmacological properties of the electrical coupling between rod-driven horizontal cells in skate retina as revealed previously by receptive-field measurements (Qian & Ripps, 1992). The junctional resistance was measured in electrically coupled cell pairs that had been enzymatically isolated and maintained in culture; the typical value was about 19.92 MΩ(n = 45), more than an order of magnitude lower than the nonjunctional membrane resistance. These data and the intercellular spread of the fluorescent dye Lucifer Yellow provide a good indication that skate horizontal cells are well coupled. The junctional conductance between cells was not modulated by the neurotransmitters dopamine (200 μM) or GABA (1 mM), nor was it affected by the membrane-permeable analogues of cAMP or cGMP, or the adenylate cyclase activator, forskolin. Although resistant to agents that have been reported to alter horizontal-cell coupling in cone-driven horizontal cells, the junctional conductance between paired horizontal cells of skate was greatly reduced by the application of 20 mM acetate, which is known to effectively reduce intracellular pH. Together with the results obtained in situ on the receptive-field properties of skate horizontal cells, these findings indicate that the gap-junctional properties of rod-driven horizontal cells of the skate are fundamentally different from those of cone-driven horizontal cells in other species. This raises the possibility that there is more than one class of electrical synapse on vertebrate horizontal cells.


1989 ◽  
Vol 93 (4) ◽  
pp. 681-694 ◽  
Author(s):  
M Kamermans ◽  
B W van Dijk ◽  
H Spekreijse ◽  
R C Zweypfenning

The spatial and color coding of the monophasic horizontal cells were studied in light- and dark-adapted retinae. Slit displacement experiments revealed differences in integration area for the different cone inputs of the monophasic horizontal cells. The integration area measured with a 670-nm stimulus was larger than that measured with a 570-nm stimulus. Experiments in which the diameter of the test spot was varied, however, revealed at high stimulus intensities a larger summation area for 520-nm stimuli than for 670-nm stimuli. The reverse was found for low stimulus intensities. To investigate whether these differences were due to interaction between the various cone inputs to the monophasic horizontal cell, adaptation experiments were performed. It was found that the various cone inputs were not independent. Finally, some mechanisms for the spatial and color coding will be discussed.


1996 ◽  
Vol 76 (3) ◽  
pp. 2005-2019 ◽  
Author(s):  
W. A. Hare ◽  
W. G. Owen

1. It is widely believed that signals contributing to the receptive field surrounds of retinal bipolar cells pass from horizontal cells to bipolar cells via GABAergic synapses. To test this notion, we applied gamma-aminobutyric acid (GABA) agonists and antagonists to isolated, perfused retinas of the salamander Ambystoma tigrinum while recording intracellularly from bipolar cells, horizontal cells, and photoreceptors. 2. As we previously reported, administration of the GABA analogue D-aminovaleric acid in concert with picrotoxin did not block horizontal cell responses or the center responses of bipolar cells but blocked the surround responses of both on-center and off-center bipolar cells. 3. Surround responses were not blocked by the GABA, antagonists picrotoxin or bicuculline, the GABAB agonist baclofen or the GABAB antagonist phaclofen, and the GABAC antagonists picrotoxin or cis-4-aminocrotonic acid. Combinations of these drugs were similarly ineffective. 4. GABA itself activated a powerful GABA uptake mechanism in horizontal cells for which nipecotic acid is a competitive agonist. It also activated, both in horizontal cells and bipolar cells, large GABAA conductances that shunted light responses but that could be blocked by picrotoxin or bicuculline. 5. GABA, administered together with picrotoxin to block the shunting effect of GABAA activation, did not eliminate bipolar cell surround responses at concentrations sufficient to saturate the known types of GABA receptors. 6. Surround responses were not blocked by glycine or its antagonist strychnine, or by combinations of drugs designed to eliminate GABAergic and glycinergic pathways simultaneously. 7. Although we cannot fully discount the involvement of a novel GABAergic synapse, the simplest explanation of our findings is that the primary pathway mediating the bipolar cell's surround is neither GABAergic nor glycinergic.


1996 ◽  
Vol 76 (4) ◽  
pp. 2307-2315 ◽  
Author(s):  
D. G. McMahon ◽  
L. V. Ponomareva

1. In the retina, as in other regions of the vertebrate central nervous system, glutamate receptors mediate excitatory chemical synaptic transmission and are a critical site for the regulation of cellular communication. In this study, retinal horizontal cells from the hybrid less were dissociated in cell culture, voltage clamped by the whole cell recording technique, and the currents evoked by application of excitatory amino acids recorded. 2. Responses to glutamate and its agonist kainate were reduced by approximately 50% in the presence of the nitric oxide (NO) donors sodium nitroprusside and S-nitroso-N-acetylpenicillamine. The effect of these compounds was blocked by the NO scavenger hemoglobin. 3. This effect of NO donors on kainate currents could be mimicked by the application of a membrane permeable guanosine 3',5'-cyclic monophosphate (cGMP) analogue, 8-Br-cGMP. The NO effect was also blocked by application of the guanylate cyclase inhibitor LY-83583, and by a protein kinase G inhibitor peptide. 4. In H1-type horizontal cells, stimulation of endogenous nitric oxide synthase with L-arginine reduced kainate responses, whereas application of D-arginine had no effect. 5. This receptor modulation mechanism may act in concert with other pre- and postsynaptic mechanisms to modify horizontal cell synaptic function according to the adaptational state of the retina and also may protect horizontal cells from glutamate excitotoxicity.


1997 ◽  
Vol 14 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Keith M. Studholme ◽  
Stephen Yazulla

AbstractThere are four types of horizontal cell in the goldfish retina, three cone- and one rod-type. The neurotransmitter of only one type, the H1 (cone) horizontal cell, has been identified as GABA. 3H-adenosine uptake was examined as a possible marker for the other classes of horizontal cell. Isolated goldfish retinae were incubated in 3H-adenosine (10–40 μCi) in HEPES-buffered saline for 30 min, then fixed, embedded in plastic, and processed for light-microscopic autoradiography (ARG). For double-label immuno/ARG studies, l-μm-thick sections were processed for GABA postembed immunocytochemistry, then for ARG. 3H-adenosine uptake was localized to cone photoreceptors, presumed precursor cells in the proximal outer nuclear layer, and to a single, continuous row of horizontal cell bodies in the inner nuclear layer. No uptake was localized to the region of horizontal cell axon terminals. 3H-adenosine uptake did not colocalize with GABA-IR in H1 horizontal cells, but it did colocalize with adenosine deaminase immunoreactivity. It is concluded that 3H-adenosine uptake selectively labels rod horizontal cells in the goldfish retina based on position and staining pattern, which are similar to rod horizontal cells stained by Golgi or HRP injection methods. The use of 3H-adenosine uptake may provide a useful tool to study other properties of rod horizontal cells (i.e. development) as well as provide clues as to the transmitter used by these interneurons.


1991 ◽  
Vol 66 (6) ◽  
pp. 1993-2001 ◽  
Author(s):  
S. Borges ◽  
M. Wilson

1. The effects of glycine on horizontal cells have been examined by microelectrode recording from superfused retinas isolated from the salamander. 2. Low concentrations of glycine (less than 50 microM) hyperpolarized horizontal cells and increased the magnitude of their light responses. Millimolar concentrations produced the opposite effect of depolarizing these cells and reducing their light response amplitudes. 3. In the presence of Co2+ and Mg2+ at concentrations sufficient to suppress the light response, millimolar glycine still exerted a depolarizing effect on horizontal cells, implying that this effect was largely a direct one on horizontal cell membranes. 4. Although both the rod and the cone contributions to horizontal cell light responses were reduced by millimolar glycine, rod input was reduced more, suggesting that millimolar glycine may also exert a presynaptic effect. 5. Strychnine (10 microns) antagonized the effects of millimolar glycine and, in the absence of exogenously applied glycine, caused horizontal cells to hyperpolarize and their light responses to increase in amplitude. This result implies that, in darkness, glycine is tonically released onto horizontal cells and maintains them in a state of partial depolarization. 6. The low-concentration effect of glycine was accompanied by an increased membrane resistance and receptive field size but no change in the balance of rod and cone input. 7. Low concentrations of glycine were often seen to cause a speeding of light responses, whereas high concentrations sometimes caused a slowing of response kinetics. Response kinetics were found to correlate with horizontal cell dark membrane potential so that, positive to -30 mV, depolarization slowed responses whereas kinetics at more negative values were largely independent of voltage.


Sign in / Sign up

Export Citation Format

Share Document