color processing
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Vlad Atanasiu ◽  
Isabelle Marthot-Santaniello

AbstractThis article develops theoretical, algorithmic, perceptual, and interaction aspects of script legibility enhancement in the visible light spectrum for the purpose of scholarly editing of papyri texts. Novel legibility enhancement algorithms based on color processing and visual illusions are compared to classic methods in a user experience experiment. (1) The proposed methods outperformed the comparison methods. (2) Users exhibited a broad behavioral spectrum, under the influence of factors such as personality and social conditioning, tasks and application domains, expertise level and image quality, and affordances of software, hardware, and interfaces. No single enhancement method satisfied all factor configurations. Therefore, it is suggested to offer users a broad choice of methods to facilitate personalization, contextualization, and complementarity. (3) A distinction is made between casual and critical vision on the basis of signal ambiguity and error consequences. The criteria of a paradigm for enhancing images for critical applications comprise: interpreting images skeptically; approaching enhancement as a system problem; considering all image structures as potential information; and making uncertainty and alternative interpretations explicit, both visually and numerically.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Emil Kind ◽  
Kit D Longden ◽  
Aljoscha Nern ◽  
Arthur Zhao ◽  
Gizem Sancer ◽  
...  

Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in Drosophila, and we have used light microscopy to confirm many of our findings. We identified known and novel downstream targets that are selective for different wavelengths or polarized light, and followed their projections to other areas in the optic lobes and the central brain. Our results revealed many synapses along the photoreceptor axons between brain regions, new pathways in the optic lobes, and spatially segregated projections to central brain regions. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, and lack strong connections to the lobula, a neuropil involved in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.


2021 ◽  
Author(s):  
Bahman Abbassi ◽  
Li Zhen Cheng

A crucial task for integrated geoscientific image (geo-image) interpretation is the relevant geological representation of multiple geo-images, which demands high-dimensional techniques for extracting latent geological features from high-dimensional geo-images. A standalone mathematical tool called SFE2D (spatiospectral feature extraction in two-dimension) is developed based on independent component analysis (ICA), continuous wavelet transform (CWT), k-means clustering segmentation, and RGB color processing that iteratively separates, extracts, clusters, and visualizes the highly correlated and overlapped geological features from multiple sources of geo-images. The SFE2D offers spatial feature extraction and wavelet-based spectral feature extraction for further extraction of frequency-dependent features. We show that the SFE2D is a robust tool for automated pattern recognition, fast pseudo-geological mapping, and detection of regions of interest with a wide range of applications in different scales, from regional geophysical surveys to the interpretation of microscopic images.


2021 ◽  
Author(s):  
Benjamin J. Stauch ◽  
Alina Peter ◽  
Isabelle Ehrlich ◽  
Zora Nolte ◽  
Pascal Fries

Strong gamma-band oscillations in primate early visual cortex can be induced by spatially homogeneous, high-contrast stimuli, such as color surfaces. Compared to other hues, particularly strong gamma oscillations have been reported for red stimuli. However, precortical color processing and the resultant strength of input to V1 has often not been fully controlled for. This leaves the possibility that stronger responses to some hues were due to differences in V1 input strength. We presented stimuli that had equal luminance and color contrast levels in a color coordinate system based on color responses of the lateral geniculate nucleus, the main input source for area V1. With these stimuli, we recorded magnetoencephalography in 30 human subjects. We found narrowband color-induced gamma oscillations in early visual cortex, which, contrary to previous reports, did not differ between red and green stimuli of equal L-M cone contrast. Notably, blue stimuli with contrast exclusively on the S cone axis induced very weak gamma responses, as well as smaller event-related fields and poorer change detection performance. The strength of human color gamma responses could be well explained by the strength of thalamic input induced by each hue and does not show a clear red bias when this input strength is properly equalized. 


2021 ◽  
Vol 12 ◽  
Author(s):  
Kota Suzuki

Sequential congruency effects are observed in interference tasks, in which reaction times (RTs) are shorter for congruent stimuli preceded by congruent (cC) than incongruent stimuli (iC), and RTs are longer for incongruent stimuli preceded by congruent (cI) than incongruent stimuli (iI). These effects are interpreted as resulting from incongruent stimuli triggering attentional control in the next trial, which reduces cognitive control. This study aimed to examine sequential congruency effects on event-related potential (ERP) components for Go- and Nogo-stimuli. We used the hybrid reverse Stroop Go/Nogo task. The stimuli were Kanji characters, “赤” (i.e., red) and “青” (i.e., blue) painted in congruent and incongruent colors. Participants responded to one of the two characters (i.e, the Go-stimulus) and stopped responding to the other character (i.e., the Nogo-stimulus). The results indicated that the Nogo-N1 was reduced by trials preceded by incongruent stimuli compared with congruent ones, suggesting that color processing was inhibited by attentional control; however, there was no reduction in the Go-N1. In addition, the Nogo-N2 amplitudes were larger for cI than iI and iC than cC. On the other hand, the Go-N2 was not modulated by sequential modulation effects, which was lower for incongruent stimuli than congruent stimuli. These results indicate that the Nogo-N2 is involved in cognitive control, whereas the Go-N2 is associated with selection processing. These findings suggest that the modulation of sequential congruency effects of N1 and N2 required the response inhibition task demand; however, Go-P3 and Nogo-P3 amplitudes were the largest for cI. Therefore, the time range of ERP components might be related to the susceptibility of an interaction effect between response inhibition task demand and sequential congruency effects.


Author(s):  
Ruo Xiu Xiao ◽  
Jia Yu Wang ◽  
Tao Zhang ◽  
Ke Meng ◽  
Li Qun Cao ◽  
...  

An interactive visualization of the patients’ 3D medical anatomical model as guide is often helpful for doctors during complex surgery. However, there are certain limitations according to the actual requirements of building sterile operating environment. Traditional human–computer interaction tools (mouse and keyboard) must be disinfected regularly and cannot be used in the process. A noncontact gesture control medical model based on Leap Motion is proposed in this study. The gesture is recognized and localized without using mouse and keyboards through a binocular camera assembled on Leap Motion. Hence, the model is directly controlled by the gesture to complete the operation of rotation, zoom, and other functions. In this study, a 3D heart model is combined with pseudo-color processing technology to enhance the observability of its 3D structure. Gesture recognition technology is then utilized to control the rendered model as rotation and zoom. Experimental results show that our system has an absolute accuracy in recognizing circle, swipe, and other actions. Thus, rotation is proposed as a new motion that can be identified steadily. Rotation plays an essential role in usability, intuition, and interactive efficiency of future system design. The system is applicable to sterile operating environments due to its stable recognition process and small space occupation.


2021 ◽  
Author(s):  
Emil Kind ◽  
Kit D. Longden ◽  
Aljoscha Nern ◽  
Arthur Zhao ◽  
Gizem Sancer ◽  
...  

Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. We have systematically reconstructed, using light and electron microscopy, the synaptic targets of the photoreceptors specialized to detect color and polarized light in Drosophila. We identified known and novel downstream targets that are selective for different wavelengths as well as for polarized light and followed their projections to other areas in the optic lobes and the central brain. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, that lack strong connections to the lobula, a neuropil with a proposed role in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.


NeuroImage ◽  
2021 ◽  
pp. 118165
Author(s):  
Byoung-Kyong Min ◽  
Hyun-Seok Kim ◽  
Wonjun Ko ◽  
Min-Hee Ahn ◽  
Heung-Il Suk ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
pp. e12-e17
Author(s):  
Joseph F. Clark ◽  
Bradley T. Jacobs ◽  
Bret E. Betz ◽  
Mashal Akhter ◽  
Kimberly A. Hasselfeld ◽  
...  

IntroductionThe University of Cincinnati has been doing NeuroVisual Training (NVT) as part of an injury prevention and performance enhancement program since 2010. We recently noticed that some athletes have substantial differences in visual reaction time based on color, specifically red versus green. We set out to assess if they may have had any color processing deficiencies.MethodsWe identified 4 out of 107 screened athletes with deficiencies in their ability to react to green compared to red. After identifying these color deficiencies, we developed a protocol to assess and manage the said deficiencies. The protocol included assessing for color blindness with the Ishihara plates, color Visual Evoked Potentials (cVEP), and color-based visual reaction times.ResultsNone of the individuals had color blindness based on the Ishihara plates. There were significant differences in visual reaction times for red and green with red being significantly slower. cVEP mean red P100 latency was 115.5 ± 3.2 ms versus 104.4 ± 1.3 ms for green, and mean voltage was 7.30 ± 1.4 µV versus 9.20 ± 1.4 µV for green. DiscussionNVT is becoming a mainstream means to improve performance and safety for athletes in competitive sports. It was interesting to note that high caliber athletes in a division 1 college football program were showing relatively slow visual reaction times. We were able to train them to a higher level of NVT proficiency once we included color-based tasks that best suited their ability to see and process quickly. People performing NVT on athletes may wish to be aware of and consider checking for color processing deficiencies such that one can train the athletes to the highest level possible.


Sign in / Sign up

Export Citation Format

Share Document