Ionic Current Model of a Hypoglossal Motoneuron

2005 ◽  
Vol 93 (2) ◽  
pp. 723-733 ◽  
Author(s):  
Liston K. Purvis ◽  
Robert J. Butera

We have developed a single-compartment, electrophysiological, hypoglossal motoneuron (HM) model based primarily on experimental data from neonatal rat HMs. The model is able to reproduce the fine features of the HM action potential: the fast afterhyperpolarization, the afterdepolarization, and the medium-duration afterhyperpolarization (mAHP). The model also reproduces the repetitive firing properties seen in neonatal HMs and replicates the neuron's response to pharmacological experiments. The model was used to study the role of specific ionic currents in HM firing and how variations in the densities of these currents may account for age-dependent changes in excitability seen in HMs. By varying the density of a fast inactivating calcium current, the model alternates between accelerating and adapting firing patterns. Modeling the age-dependent increase in H current density accounts for the decrease in mAHP duration observed experimentally, but does not fully account for the decrease in input resistance. An increase in the density of the voltage-dependent potassium currents and the H current is required to account for the decrease in input resistance. These changes also account for the age-dependent decrease in action potential duration.

2020 ◽  
Vol 21 (5) ◽  
pp. 1672 ◽  
Author(s):  
Wei-Ting Chang ◽  
Ping-Yen Liu ◽  
Kaisen Lee ◽  
Yin-Hsun Feng ◽  
Sheng-Nan Wu

Lapatinib (LAP) and sorafenib (SOR) are multitargeted tyrosine kinase inhibitors (TKIs) with antineoplastic properties. In clinical observations, LAP and SOR may contribute to QTc prolongation, but the detailed mechanism for this has been largely unexplored. In this study, we investigated whether LAP and SOR affect the activities of membrane ion channels. Using a small animal model and primary cardiomyocytes, we studied the impact of LAP and SOR on Na+ and K+ currents. We found that LAP-induced QTc prolongation in mice was reversed by isoproterenol. LAP or SOR suppressed the amplitude of the slowly activating delayed-rectifier K+ current (IK(S)) in H9c2 cells in a time- and concentration-dependent fashion. The LAP-mediated inhibition of IK(S) was reversed by adding isoproterenol or meclofenamic acid, but not by adding diazoxide. The steady-state activation curve of IK(S) during exposure to LAP or SOR was shifted toward a less negative potential, with no change in the gating charge required to activate the current. LAP shortened the recovery from IK(S) deactivation. As rapid repetitive stimuli, the IK(S) amplitude decreased; however; the LAP-induced inhibition of IK(S) remained effective. LAP or SOR alone also suppressed inwardly rectifying K+ and voltage-gated Na+ current in neonatal rat ventricular myocytes. The inhibition of ionic currents during exposure to TKIs could be an important mechanism underlying changes in QTc intervals.


1993 ◽  
Vol 69 (6) ◽  
pp. 2150-2163 ◽  
Author(s):  
F. Viana ◽  
D. A. Bayliss ◽  
A. J. Berger

1. The role of multiple potassium conductances in action potential repolarization and repetitive firing behavior of hypoglossal motoneurons was investigated using intracellular recording techniques in a brain stem slice preparation of the neonatal rat (0-15 days old). 2. The action potential was followed by two distinct afterhyperpolarizations (AHPs). The early one was of short duration and is termed the fAHP; the later AHP was of longer duration and is termed the mAHP. The amplitudes of both AHPs were enhanced by membrane potential depolarization (further from EK). In addition, their amplitudes were reduced by high extracellular K+ concentration, suggesting that activation of potassium conductances underlies both phases of the AHP. 3. Prolongation of the action potential and blockade of the fAHP were observed after application of 1) tetraethylammonium (TEA) (1-10 mM) and 2) 4-aminopyridine (4-AP) (0.1-0.5 mM). Calcium channel blockers had little or no effect on the fAHP or action potential duration. 4. The size of the mAHP was diminished by 1) manganese, 2) lowering external Ca2+, 3) apamin, and 4) intracellular injection of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) suggesting that influx of calcium activates the potassium conductance that underlies the mAHP. 5. The mAHP was unaffected by nifedipine (20 microM), but was strongly reduced by focal application of omega-conotoxin GVIA, suggesting that N-type calcium channels represent the major calcium influx pathway for activation of the calcium-dependent K+ conductance underlying the mAHP. 6. Repetitive firing properties were investigated by injecting long-duration depolarizing current pulses. Steady-state firing rose linearly with injected current amplitude. The slope of the firing frequency-current (f-I) relationship averaged approximately 30 Hz/nA in control conditions. Blockade of the conductance underlying the mAHP caused a marked increase in the minimal repetitive firing frequency and in the slope of the f-I plot, indicating a prominent role for the conductance underlying the mAHP in controlling repetitive firing behavior. 7. We conclude that action potential repolarization and AHPs are due to activation of pharmacologically distinct potassium conductances. Whereas repolarization of the action potential and the fAHP involves primarily a voltage-dependent, calcium-independent potassium conductance that is TEA- and 4-AP-sensitive, the mAHP requires the influx of extracellular calcium and is apamin sensitive. Activation of the calcium-activated potassium conductance greatly influences the normal repetitive firing of neonatal hypoglossal motoneurons.


1993 ◽  
Vol 70 (5) ◽  
pp. 1975-1987 ◽  
Author(s):  
S. M. Johnson ◽  
R. B. Felder

1. Recent studies have demonstrated that the arterial baroreflex is imparied with aging and have implicated central components of the baroreflex arc in this autonomic dysfunction. Neurons in the medial portion of the nucleus tractus solitarius (mNTS) receive a major input from the arterial baroreceptors. The present study was undertaken to characterize the intrinsic membrane properties of mNTS neurons in young rats and to test the hypothesis that these properties are altered with aging. An in vitro brain stem slice preparation was used to record intracellularly from mNTS neurons; passive membrane properties, action potential characteristics, and repetitive firing properties were examined and compared. 2. Neurons in the mNTS of young (3-5 mo old) Fischer-344 rats (F-344; n = 35) had a resting membrane potential of -57 +/- 6.9 mV (mean +/- SD), a membrane time constant of 18 +/- 9.0 ms, and an input resistance of 110 +/- 60 m omega. Action potential amplitude was 81 +/- 7.5 mV with a duration at half-height of 0.83 +/- 0.15 ms. The spontaneous firing rate in 24 cells was 4.3 +/- 2.9 Hz. The amplitude and duration of the action potential afterhyperpolarization (AHP) were 6.6 +/- 3.0 mV and 64 +/- 34 ms, respectively. All neurons expressed spike frequency adaptation, action potential AHP, and posttetanic hyperpolarization. Delayed excitation and postinhibitory rebound were present in 34 and 14% of neurons tested, respectively. Neurons from adult (10-12 mo old) F-344 rats (n = 34) were similar to the young F-344 rats with respect to all of these variables. 3. Neurons from aged (21-24 mo old) F-344 (n = 32) were similar to those from young and adult rats, but there were two potentially important differences: the mean input resistance of the aged neurons was higher (170 +/- 150 M omega), with a larger proportion (46% of aged neurons vs. 20% of young neurons and 21% of adult neurons) having input resistances > 150 M omega; and there was a tendency for a smaller percentage of aged neurons (16% of aged neurons vs. 34% of young neurons and 29% of adult neurons) to express delayed excitation. 4. The potential significance of a high input resistance was tested by comparing the steady-state current-voltage (I-V) relationships and the frequency-current (f-I) relationships among low-resistance (1-100 M omega), medium-resistance (101-200 M omega).(ABSTRACT TRUNCATED AT 400 WORDS)


2010 ◽  
Vol 104 (3) ◽  
pp. 1625-1634 ◽  
Author(s):  
Aryn H. Gittis ◽  
Setareh H. Moghadam ◽  
Sascha du Lac

To fire at high rates, neurons express ionic currents that work together to minimize refractory periods by ensuring that sodium channels are available for activation shortly after each action potential. Vestibular nucleus neurons operate around high baseline firing rates and encode information with bidirectional modulation of firing rates up to several hundred Hz. To determine the mechanisms that enable these neurons to sustain firing at high rates, ionic currents were measured during firing by using the action potential clamp technique in vestibular nucleus neurons acutely dissociated from transgenic mice. Although neurons from the YFP-16 line fire at rates higher than those from the GIN line, both classes of neurons express Kv3 and BK currents as well as both transient and resurgent Na currents. In the fastest firing neurons, Kv3 currents dominated repolarization at all firing rates and minimized Na channel inactivation by rapidly transitioning Na channels from the open to the closed state. In slower firing neurons, BK currents dominated repolarization at the highest firing rates and sodium channel availability was protected by a resurgent blocking mechanism. Quantitative differences in Kv3 current density across neurons and qualitative differences in immunohistochemically detected expression of Kv3 subunits could account for the difference in firing range within and across cell classes. These results demonstrate how divergent firing properties of two neuronal populations arise through the interplay of at least three ionic currents.


2000 ◽  
Vol 83 (6) ◽  
pp. 3497-3508 ◽  
Author(s):  
Miguel Martin-Caraballo ◽  
John J. Greer

Prior to the inception of inspiratory synaptic drive transmission from medullary respiratory centers, rat phrenic motoneurons (PMNs) have action potential and repetitive firing characteristics typical of immature embryonic motoneurons. During the period spanning from when respiratory bulbospinal and segmental afferent synaptic connections are formed at embryonic day 17 ( E17) through to birth (gestational period is ∼21 days), a pronounced transformation of PMN electrophysiological properties occurs. In this study, we test the hypothesis that the elaboration of action potential afterpotentials and the resulting changes in repetitive firing properties are due in large part to developmental changes in PMN potassium conductances. Ionic conductances were measured via whole cell patch recordings using a cervical slice-phrenic nerve preparation isolated from perinatal rats. Voltage- and current-clamp recordings revealed that PMNs expressed outward rectifier ( I KV) and A-type potassium currents that regulated PMN action potential and repetitive firing properties throughout the perinatal period. There was an age-dependent leftward shift in the activation voltage and a decrease in the time-to-peak of I KV during the period from E16 through to birth. The most dramatic change during the perinatal period was the increase in calcium-activated potassium currents after the inception of inspiratory drive transmission at E17. Block of the maxi-type calcium-dependent potassium conductance caused a significant increase in action potential duration and a suppression of the fast afterhyperpolarizing potential. Block of the small conductance calcium-dependent potassium channels resulted in a marked suppression of the medium afterhyperpolarizing potential and an increase in the repetitive firing frequency. In conclusion, the increase in calcium-mediated potassium conductances are in large part responsible for the marked transformation in action potential shape and firing properties of PMNs from the time between the inception of fetal respiratory drive transmission and birth.


2002 ◽  
Vol 283 (3) ◽  
pp. H1031-H1041 ◽  
Author(s):  
Gui-Rong Li ◽  
Chu-Pak Lau ◽  
Anique Ducharme ◽  
Jean-Claude Tardif ◽  
Stanley Nattel

Heart failure (HF) produces important alterations in currents underlying cardiac repolarization, but the transmural distribution of such changes is unknown. We therefore recorded action potentials and ionic currents in cells isolated from the endocardium, midmyocardium, and epicardium of the left ventricle from dogs with and without tachypacing-induced HF. HF greatly increased action potential duration (APD) but attenuated APD heterogeneity in the three regions. Early afterdepolarizations (EADs) were observed in all cell types of failing hearts but not in controls. Inward rectifier K+ current ( I K1) was homogeneously reduced by ∼41% (at −60 mV) in the three cell types. Transient outward K+ current ( I to1) was decreased by 43–45% at +30 mV, and the slow component of the delayed rectifier K+ current ( I Ks) was significantly downregulated by 57%, 49%, and 58%, respectively, in epicardial, midmyocardial, and endocardial cells, whereas the rapid component of the delayed rectifier K+ current was not altered. The results indicate that HF remodels electrophysiology in all layers of the left ventricle, and the downregulation of I K1, I to1, and I Ks increases APD and favors occurrence of EADs.


1997 ◽  
Vol 78 (5) ◽  
pp. 2321-2335 ◽  
Author(s):  
Rachel E. Locke ◽  
Jeanne M. Nerbonne

Locke, Rachel E. and Jeanne M. Nerbonne. Role of voltage-gated K+ currents in mediating the regular-spiking phenotype of callosal-projecting rat visual cortical neurons. J. Neurophysiol. 78: 2321–2335, 1997. Whole cell current- and voltage-clamp recordings were combined to examine action potential waveforms, repetitive firing patterns, and the functional roles of voltage-gated K+ currents ( I A, I D, and I K) in identified callosal-projecting (CP) neurons from postnatal (day 7–13) rat primary visual cortex. Brief (1 ms) depolarizing current injections evoke single action potentials in CP neurons with mean ± SD ( n = 60) durations at 50 and 90% repolarization of 1.9 ± 0.5 and 5.5 ± 2.0 ms, respectively; action potential durations in individual cells are correlated inversely with peak outward current density. During prolonged threshold depolarizing current injections, CP neurons fire repetitively, and two distinct, noninterconverting “regular-spiking” firing patterns are evident: weakly adapting CP cells fire continuously, whereas strongly adapting CP cells cease firing during maintained depolarizing current injections. Action potential repolarization is faster and afterhyperpolarizations are more pronounced in strongly than in weakly adapting CP cells. In addition, input resistances are lower and plateau K+ current densities are higher in strongly than in weakly adapting CP cells. Functional studies reveal that blockade of I D reduces the latency to firing an action potential, and increases action potential durations at 50 and 90% repolarization. Blockade of I D also increases firing rates in weakly adapting cells and results in continuous firing of strongly adapting cells. After applications of millimolar concentrations of 4-aminopyridine to suppress I A (as well as block I D), action potential durations at 50 and 90% repolarization are further increased, and firing rates are accelerated over those observed when only I D is blocked. Using VClamp/CClamp and the voltage-clamp data in the preceding paper, mathematical descriptions of I A, I D, and I K are generated and a model of the electrophysiological properties of rat visual cortical CP neurons is developed. The model is used to simulate the firing properties of strongly adapting and weakly adapting CP cells and to explore the functional roles of I A, I D, and I K in shaping the waveforms of individual action potentials and controlling the repetitive firing properties of these cells.


1998 ◽  
Vol 80 (6) ◽  
pp. 3047-3061 ◽  
Author(s):  
Bao-Xi Gao ◽  
Lea Ziskind-Conhaim

Gao, Bao-Xi and Lea Ziskind-Conhaim. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. J. Neurophysiol. 80: 3047–3061, 1998. Differentiation of the ionic mechanism underlying changes in action potential properties was investigated in spinal motoneurons of embryonic and postnatal rats using whole cell voltage- and current-clamp recordings. Relatively slow-rising, prolonged, largely Na+-dependent action potentials were recorded in embryonic motoneurons, and afterdepolarizing potentials were elicited in response to prolonged intracellular injections of depolarizing currents. Action potential amplitude, as well as its rates of rise and repolarization significantly increased, and an afterhyperpolarizing potential (AHP) became apparent immediately after birth. Concurrently, repetitive action potential firing was elicited in response to a prolonged current injection. To determine the ionic mechanism underlying these changes, the properties of voltage-gated macroscopic Na+, Ca2+, and K+ currents were examined. Fast-rising Na+ currents ( I Na) and slow-rising Ca2+ currents ( I Ca) were expressed early in embryonic development, but only I Na was necessary and sufficient to trigger an action potential. I Na and I Ca densities significantly increased while the time to peak I Na and I Ca decreased after birth. The postnatal increase in I Na resulted in overshooting action potential with significantly faster rate of rise than that recorded before birth. Properties of three types of outward K+ currents were examined: transient type-A current ( I A), noninactivating delayed rectifier-type current ( I K), and Ca2+-dependent K+ current ( I K(Ca)). The twofold postnatal increase in I K and I K(Ca) densities resulted in shorter duration action potential and the generation of AHP. Relatively large I A was expressed early in neuronal development, but unlike I K and I K(Ca) its density did not increase after birth. The three types of K+ channels had opposite modulatory actions on action potential firing behavior: I K and I A increased the firing rate, whereas I K(Ca) decreased it. Our findings demonstrated that the developmental changes in action potential waveforms and the onset of repetitive firing were correlated with large increases in the densities of existing voltage-gated ion channels rather than the expression of new channel types.


2021 ◽  
Author(s):  
Mala Shah ◽  
Alexandra Topczewska ◽  
Elisabetta Giacalone ◽  
Wendy S Pratt ◽  
Michele Migliore ◽  
...  

The medial entorhinal cortex (mEC) plays a salient role in physiological processes such as spatial cognition and spatial coding. mEC layer II stellate neurons, in particular, influence these processes. Interestingly, ventral and dorsal stellate neurons diversely affect these processes and have distinct intrinsic membrane properties and action potential firing patterns. Little, though, is known about how ventral stellate neuron intrinsic excitability is regulated. We show that ventral stellate neurons predominantly possess T-type Ca2+ currents encoded by CaV3.2 subunits, with dorsal stellate neurons having small or no currents. Further, twice as much CaV3.2 mRNA was present in ventral than dorsal mEC. In line with T-type, CaV3.2 Ca2+ current biophysical properties, depolarising stimuli activated these currents in ventral, but not dorsal, neurons. Here, these currents acted in concert with persistent Na+ currents to elevate input resistance and tonic action potential firing. CaV3.2 currents also enhanced excitatory post-synaptic potential decay and integration solely in ventral neurons. These results reveal that CaV3.2 currents, together with persistent Na+ currents, impart the characteristic intrinsic membrane and firing properties of ventral stellate neurons. This signifies that specific voltage-gated conductances distinctly affect ventral and dorsal mEC stellate neuron activity and functions such as spatial memory and spatial navigation.


Sign in / Sign up

Export Citation Format

Share Document