Stance- and Locomotion-Dependent Processing of Vibration-Induced Proprioceptive Inflow From Multiple Muscles in Humans

2007 ◽  
Vol 97 (1) ◽  
pp. 772-779 ◽  
Author(s):  
Grégoire Courtine ◽  
Alessandro Marco De Nunzio ◽  
Micaela Schmid ◽  
Maria Vittoria Beretta ◽  
Marco Schieppati

We performed a whole-body mapping study of the effect of unilateral muscle vibration, eliciting spindle Ia firing, on the control of standing and walking in humans. During quiet stance, vibration applied to various muscles of the trunk-neck system and of the lower limb elicited a significant tilt in whole body postural orientation. The direction of vibration-induced postural tilt was consistent with a response compensatory for the illusory lengthening of the stimulated muscles. During walking, trunk-neck muscle vibration induced ample deviations of the locomotor trajectory toward the side opposite to the stimulation site. In contrast, no significant modifications of the locomotor trajectory could be detected when vibrating various muscles of the lower as well as upper limb. The absence of correlation between the effects of muscle vibration during walking and standing dismisses the possibility that vibration-induced postural changes can account for the observed deviations of the locomotor trajectory during walking. We conclude that the dissimilar effects of trunk-neck and lower limb muscle vibration during walking and standing reflect a general sensory-motor plan, whereby muscle Ia input is processed according to both the performed task and the body segment from which the sensory inflow arises.

2020 ◽  
Vol 50 (4) ◽  
pp. 227-267 ◽  
Author(s):  
Karim Jamal ◽  
Stéphanie Leplaideur ◽  
Frédérique Leblanche ◽  
Annelise Moulinet Raillon ◽  
Thibaud Honoré ◽  
...  

2017 ◽  
Vol 30 (1) ◽  
pp. 25-63 ◽  
Author(s):  
Mitchell W. Taylor ◽  
Janet L. Taylor ◽  
Tatjana Seizova-Cajic

Limb muscle vibration creates an illusory limb movement in the direction corresponding to lengthening of the vibrated muscle. Neck muscle vibration results in illusory motion of visual and auditory stimuli. Attributed to the activation of muscle spindles, these and related effects are of great interest as a tool in research on proprioception, for rehabilitation of sensorimotor function and for multisensory immersive virtual environments. However, these illusions are not easy to elicit in a consistent manner. We review factors that influence them, propose their classification in a scheme that links this area of research to perception theory, and provide practical suggestions to researchers. Local factors that determine the illusory effect of vibration include properties of the vibration stimulus such as its frequency, amplitude and duration, and properties of the vibrated muscle, such as contraction and fatigue. Contextual (gestalt) factors concern the relationship of the vibrated body part to the rest of the body and the environment. Tactile and visual cues play an important role, and so does movement, imagined or real. The best-known vibration illusions concern one’s own body and can be classified as ‘first-order’ due to a direct link between activity in muscle spindles and the percept. More complex illusions involve other sensory modalities and external objects, and provide important clues regarding the hidden role of proprioception, our ‘silent’ sense. Our taxonomy makes explicit this and other distinctions between different illusory effects. We include User’s Guide with tips for anyone wishing to conduct a vibration study.


2002 ◽  
Vol 88 (5) ◽  
pp. 2232-2241 ◽  
Author(s):  
Marco Bove ◽  
Gregoire Courtine ◽  
Marco Schieppati

Unilateral long-lasting vibration was applied to the sternomastoid muscle to assess the influence of asymmetric neck proprioceptive input on body orientation during stepping-in-place. Blindfolded subjects performed 3 sequences of 3 trials, each lasting 60 s: control, vibration applied during stepping (VDS), and vibration applied before stepping (VBS). VDS caused clear-cut whole body rotation toward the side opposite to vibration. The body rotated around a vertical axis placed at about arm's length from the body. The rotation did not begin immediately on switching on the vibrator. The delay varied from subject to subject from a few seconds to about 10 s. Once initiated, the angular velocity of rotation was remarkably constant (about 1°/s). In VBS, at the beginning of stepping, subjects rotated for a while as if their neck were still vibrated. At a variable delay, the direction of rotation reversed, and the effects were opposite to those observed during VDS. Under no condition did head rotation, head roll, or lateral body tilt accompany rotation. The results confirm and extend the notion that the neck proprioceptive input plays a major role in body orientation during locomotion. The body rotation does not seem to depend on the same mechanisms that modify the erect posture; rather, the asymmetric neck input would seem to modify the egocentric body-centered coordinate system.


2004 ◽  
Vol 91 (4) ◽  
pp. 1524-1535 ◽  
Author(s):  
Grégoire Courtine ◽  
Marco Schieppati

We tested the hypothesis that common principles govern the production of the locomotor patterns for both straight-ahead and curved walking. Whole body movement recordings showed that continuous curved walking implies substantial, limb-specific changes in numerous gait descriptors. Principal component analysis (PCA) was used to uncover the spatiotemporal structure of coordination among lower limb segments. PCA revealed that the same kinematic law accounted for the coordination among lower limb segments during both straight-ahead and curved walking, in both the frontal and sagittal planes: turn-related changes in the complex behavior of the inner and outer limbs were captured in limb-specific adaptive tuning of coordination patterns. PCA was also performed on a data set including all elevation angles of limb segments and trunk, thus encompassing 13 degrees of freedom. The results showed that both straight-ahead and curved walking were low dimensional, given that 3 principal components accounted for more than 90% of data variance. Furthermore, the time course of the principal components was unchanged by curved walking, thereby indicating invariant coordination patterns among all body segments during straight-ahead and curved walking. Nevertheless, limb- and turn-dependent tuning of the coordination patterns encoded the adaptations of the limb kinematics to the actual direction of the walking body. Absence of vision had no significant effect on the intersegmental coordination during either straight-ahead or curved walking. Our findings indicate that kinematic laws, probably emerging from the interaction of spinal neural networks and mechanical oscillators, subserve the production of both straight-ahead and curved walking. During locomotion, the descending command tunes basic spinal networks so as to produce the changes in amplitude and phase relationships of the spinal output, sufficient to achieve the body turn.


2016 ◽  
Vol 234 (9) ◽  
pp. 2643-2651 ◽  
Author(s):  
Stéphanie Leplaideur ◽  
Emilie Leblong ◽  
Karim Jamal ◽  
Chloé Rousseau ◽  
Annelise Moulinet Raillon ◽  
...  

2007 ◽  
Vol 22 (4) ◽  
pp. 498-503 ◽  
Author(s):  
Marco Bove ◽  
Giampaolo Brichetto ◽  
Giovanni Abbruzzese ◽  
Roberta Marchese ◽  
Marco Schieppati

Brain ◽  
1988 ◽  
Vol 111 (6) ◽  
pp. 1405-1424 ◽  
Author(s):  
B. BIGUER ◽  
I. M. L. DONALDSON ◽  
A. HEIN ◽  
M. JEANNEROD

Sign in / Sign up

Export Citation Format

Share Document