Angiotensin II Induces Calcium-Dependent Rhythmic Activity in a Subpopulation of Rat Hypothalamic Median Preoptic Nucleus Neurons

2005 ◽  
Vol 93 (4) ◽  
pp. 1970-1976 ◽  
Author(s):  
David Spanswick ◽  
Leo P. Renaud

Whole cell patch-clamp recordings revealed a subpopulation (16%, n = 18/112) of rat median preoptic nucleus (MnPO) neurons responded to bath-applied angiotensin II (Ang II; 100 nM to 5 μM; 30–90 s) with a prolonged TTX-resistant membrane depolarization and rhythmic bursting activity. At rest, cells characteristically displayed relatively low input resistance and negative resting potentials. Ang-II-induced responses featured increased input resistance, a reversal potential of −95 ± 2 mV, an increase in action potential duration from 2.9 ± 0.5 to 4.3 ± 0.8 ms, and the appearance of a rebound excitation at the offset of membrane responses to hyperpolarizing current injection. The latter was sensitive to Ni2+ (0.5–1 mM; n = 5), insensitive to extracellular Cs+ (1 mM, n = 7), and intracellular QX-314 (4 mM, n = 5), consistent with activation of a T-type Ca2+ conductance. Coincident with the Ang-II-induced depolarization was the appearance of rhythmic depolarizing shifts at a frequency of 0.14 ± 0.09 Hz with superimposed bursts of 4–22 action potentials interspersed with silent periods persisting for >1 h after washout. These TTX-resistant depolarizing shifts increased in amplitude and decreased in frequency with membrane hyperpolarization with activity ceasing beyond approximately –80mV, and were abolished in low-Ca2+/high-Mg2+ bathing medium ( n = 6), Co2+ (1 mM; n = 6), or Ni2+ (0.5–1 mM; n = 8). Thus in a subpopulation of MnPO neurons, Ang II induces “pacemaker-like” activity by reducing a K+-dependent leak conductance that contributes to resting membrane potential and promoting of Ca2+-dependent regenerative auto-excitation mediated, in part, by a T-type Ca2+ conductance.

1986 ◽  
Vol 251 (1) ◽  
pp. H148-H152
Author(s):  
G. D. Fink ◽  
C. A. Bruner ◽  
M. L. Mangiapane

Previous studies implicated the ventral median preoptic nucleus (MNPOv) in cardiovascular responses to circulating and intracerebroventricular angiotensin II (ANG II) and in normal cardiovascular and fluid homoeostasis. In the present experiments, chronically catheterized rats received continuous (24 h/day) intravenous infusions of ANG II (10 ng/min) for 5 days, and changes in mean arterial pressure, heart rate, water intake and urinary electrolyte and water excretion were determined daily. Three groups of rats were compared as follows: 1) sham-operated control rats (n = 12), 2) rats with 20-70% of the MNPOv ablated electrolytically (n = 6), and 3) rats with over 90% of the MNPOv ablated (n = 5). The organum vasculosum of the lamina terminalis was intact in all three groups. Base-line values of all measured variables were identical in the three groups on two control days preceding ANG II infusion and on two recovery days after infusion. During the administration of ANG II for 5 days, mean arterial pressure rose significantly (and similarly) in all three groups of rats; no other variable was significantly affected by ANG II infusion. These results suggest that neural pathways originating in, or passing through, the MNPOv region are not critical in the pathogenesis of ANG II-induced hypertension in the rat.


1988 ◽  
Vol 255 (3) ◽  
pp. H646-H650 ◽  
Author(s):  
J. S. Gutkind ◽  
M. Kurihara ◽  
J. M. Saavedra

We analyzed angiotensin II (ANG II) receptors by in vitro autoradiography in selective brain nuclei of control, salt-treated (1% NaCl in drinking water), deoxycorticosterone acetate (DOCA)-treated (DOCA pivalate, 25 mg/kg sc weekly), and DOCA-salt-treated (DOCA + salt treatments) uninephrectomized male Wistar-Kyoto rats. After 4 wk of treatment, only the DOCA-salt group developed hypertension. ANG II binding increased in median preoptic nucleus and subfornical organ of salt- and DOCA-treated rats. DOCA-treated rats also showed increased ANG II binding in paraventricular nucleus. DOCA-salt-treated rats showed higher ANG II binding in nucleus of the solitary tract and area postrema, as well as in the areas mentioned before. Although salt and/or DOCA treatments alone increased ANG II receptors in some brain nuclei, after combined DOCA-salt treatment there was significantly higher ANG II binding in all areas, except the median preoptic nucleus. These results suggest that increased ANG II receptors in selected brain areas may play a role in the pathophysiology of mineralocorticoid-salt experimental hypertension.


1994 ◽  
Vol 267 (3) ◽  
pp. R792-R798 ◽  
Author(s):  
N. E. Rowland ◽  
B. H. Li ◽  
A. K. Rozelle ◽  
G. C. Smith

Rats were given intracerebroventricular injections of either angiotensin II (ANG II) or the cholinomimetic carbachol. Some rats received cotreatment with ANG II antagonists selective for either angiotensin receptor AT1 (losartan) or AT2 (PD-123319, CGP-42112A). One hour later, the rats were killed and the brains processed for immunocytochemical detection of Fos-like immunoreactivity (FLI). ANG II treatment induced strong FLI in the anterior subfornical organ (SFO), median preoptic nucleus (MnPO), organum vasculosum laminae terminalis (OVLT), and supraoptic and paraventricular hypothalamic nuclei (SON, PVH). The AT1 antagonist abolished FLI in all regions normally stimulated by ANG II. The AT2 antagonist PD-123319 reduced FLI in SON and PVH, but CGP-42112A was less effective. Carbachol induced strong FLI in SON, PVH, and MnPO and only moderate FLI in SFO and OVLT. The AT1 antagonist prevented carbachol-induced FLI in the MnPO only. The distributions of FLI are compared between these central dipsogens and with that previously reported after peripheral infusion of ANG II, and their implications for mapping central thirst pathways are discussed.


1988 ◽  
Vol 60 (3) ◽  
pp. 966-979 ◽  
Author(s):  
K. Tamura ◽  
J. M. Palmer ◽  
C. K. Winkelmann ◽  
J. D. Wood

1. Conventional intracellular recording methods were used to investigate the mechanism of action of galanin on electrical behavior of AH/type 2 myenteric neurons in the guinea pig small intestine. 2. The overall action of galanin was inhibitory and consisted of membrane hyperpolarization, decreased input resistance, and suppression of excitability. 3. The action of galanin was on the somatic membrane. There were no effects on spike initiation or propagation velocity in the processes. 4. The reversal potential for the hyperpolarizing action of galanin was near the estimated K+ equilibrium potential and was dependent on the concentration of K+ in the bathing medium. 5. Treatment with tetraethylammonium (TEA) broadened the action-potential and enhanced long-lasting hyperpolarizing after-potentials (AH). Application of galanin or depletion of Ca2+ in the bathing medium offset the effects of TEA on the spike and the AH. Galanin or reduced Ca2+ had the same effect when both TEA and tetrodotoxin (TTX) were present. 6. Simultaneous application of TEA and 4-aminopyridine (4-AP) evoked spontaneous spike discharge with broadened spikes and enhanced AH. This activity was suppressed by galanin. 7. Intrasomatic injection of Cs+ in the presence of TTX appeared to abolish all K+ conductances leaving pure Ca2+ spikes in response to depolarizing current pulse. Galanin abolished these Ca2+ spikes. 8. The results suggest two major mechanisms of action for galanin. One is to open K+ channels, decrease input resistance, and hyperpolarize the membrane toward EK+. The second is blockade of voltage gated Ca2+ channels and suppression of the AH by indirect prevention of opening of Ca2+-dependent K+ channels.


2009 ◽  
Vol 297 (3) ◽  
pp. R783-R792 ◽  
Author(s):  
Mélaine Henry ◽  
Magali Grob ◽  
Didier Mouginot

The median preoptic nucleus (MnPO) is densely innervated by efferent projections from the subfornical organ (SFO) and, therefore, is an important relay for the peripheral chemosensory and humoral information (osmolality and serum levels ANG II). In this context, controlling the excitability of MnPO neuronal populations is a major determinant of body fluid homeostasis and cardiovascular regulation. Using a brain slice preparation and patch-clamp recordings, our study sought to determine whether endogenous ANG II modulates the strength of the SFO-derived GABAergic inputs to the MnPO. Our results showed that the amplitude of the inhibitory postsynaptic currents (IPSCs) were progressively reduced by 44 ± 2.3% by (Sar1, Ile8)-ANG II, a competitive ANG type 1 receptor (AT1R) antagonist. Similarly, losartan, a nonpeptidergic AT1R antagonist decreased the IPSC amplitude by 40.4 ± 5.6%. The facilitating effect of endogenous ANG II on the GABAergic input to the MnPO was not attributed to a change in GABA release probability and was mimicked by exogenous ANG II, which potentiated the amplitude of the muscimol-activated GABAA/Cl− current by 53.1 ± 11.4%. These results demonstrate a postsynaptic locus of action of ANG II. Further analysis reveals that ANG II did not affect the reversal potential of the synaptic inhibitory response, thus privileging a cross talk between postsynaptic AT1 and GABAA receptors. Interestingly, facilitation of GABAergic neurotransmission by endogenous ANG II was specific to neurons responding to changes in the ambient Na+ level. This finding, combined with the ANG II-mediated depolarization of non-Na+-responsive neurons reveals the dual actions of ANG II to modulate the excitability of MnPO neurons.


2011 ◽  
Vol 105 (2) ◽  
pp. 650-660 ◽  
Author(s):  
Christina Tremblay ◽  
Emmanuelle Berret ◽  
Mélaine Henry ◽  
Benjamin Nehmé ◽  
Louis Nadeau ◽  
...  

Sodium (Na+) ions are of primary importance for hydromineral and cardiovascular homeostasis, and the level of Na+ in the body fluid compartments [plasma and cerebrospinal fluid (CSF)] is precisely monitored in the hypothalamus. Glial cells seem to play a critical role in the mechanism of Na+ detection. However, the precise role of neurons in the detection of extracellular Na+ concentration ([Na+]out) remains unclear. Here we demonstrate that neurons of the median preoptic nucleus (MnPO), a structure in close contact with the CSF, are specific Na+ sensors. Electrophysiological recordings were performed on dissociated rat MnPO neurons under isotonic [Na+] (100 mM NaCl) with local application of hypernatriuric (150, 180 mM NaCl) or hyponatriuric (50 mM NaCl) external solution. The hyper- and hyponatriuric conditions triggered an in- and an outward current, respectively. The reversal potential of the current matched the equilibrium potential of Na+, indicating that a change in [Na+]out modified the influx of Na+ in the MnPO neurons. The conductance of the Na+ current was not affected by either the membrane potential or the [Na+]out. Moreover, the channel was highly selective for lithium over guanidinium. Together, these data identified the channel as a Na+ leak channel. A high correlation between the electrophysiological recordings and immunofluorescent labeling for the NaX channel in dissociated MnPO neurons strongly supports this channel as a candidate for the Na+ leak channel responsible for the Na+-sensing ability of rat MnPO neurons. The absence of NaX labeling and of a specific current evoked by a change in [Na+]out in mouse MnPO neurons suggests species specificity in the hypothalamus structures participating in central Na+ detection.


1993 ◽  
Vol 70 (6) ◽  
pp. 2584-2595 ◽  
Author(s):  
P. Branchereau ◽  
J. Champagnat ◽  
M. Denavit-Saubie

1. Ionic conductances controlled by type A and type B cholecystokinin (CCK) receptors were studied in neurons of the rat nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNV), using intracellular and whole-cell patch clamp recordings in current or voltage clamp configuration during bath application of agonists (CCK8, CCK4, BC 264) and antagonists. 2. CCKA receptor-related inhibition was associated with a membrane hyperpolarization and a decrease in input resistance that developed 2-6 min after the arrival of drug into the extracellular medium. These effects were induced by 5 nM CCK8 but not BC 264 and they were blocked by the CCKA antagonist, L-364,718, but not by the CCKB antagonist, L-365,260. 3. CCKA receptor-related inhibition was generated by a potassium current that reversed at a reversal potential E(rev) of -73 +/- 1 (mean +/- SE) mV with bathing potassium concentration [K+]o = 6 mM and at -88 +/- 1 with [K+]o = 3 mM, in agreement with the Nernst equation for potassium ions. 4. CCKB receptor-related excitation was associated with a membrane depolarization and an increase of the input resistance induced by the following agonists at threshold concentrations: CCK8 (0.2 nM) > or = BC 264 (0.4 nM) > CCK4 (10.9 nM). The increase of input resistance was abolished by L-365,260 and was maintained after blockade of the CCKA current by L-364,718. 5. CCKB receptor-related excitation, in the neurons (30% of cases) in which clear response reversal was observed, appeared to be generated by a decrease of a potassium conductance. Responses showed a reversal potential E(rev) of -68 +/- 4 mV with [K+]o = 6 mM and -89 +/- 1 mV with [K+]o = 3 mM, verifying predictions from the Nernst equation applied to potassium ions. However, in 70% of cases, clear reversal was not observed at membrane potentials negative to the theoretical potassium equilibrium potential EK. 6. In voltage clamp studies, CCK8 induced a 181 +/- 17 pA inward current associated with a 26 +/- 4% decrease in the instantaneous current (I(ins)) generated by hyperpolarizing voltage steps. This effect on I(ins) was demonstrated in the absence of effects on the outward noninactivating potassium current (IM) and on the inward noninactivating cationic current (IQ). 7. CCKB receptor-mediated excitation was not suppressed by cobalt, a blocker of calcium currents, and was not associated with a change of the calcium-dependent potassium current (IK(Ca)).(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 280 (6) ◽  
pp. R1837-R1843 ◽  
Author(s):  
Zhice Xu ◽  
Calvario Glenda ◽  
Linda Day ◽  
Jiaming Yao ◽  
Michael G. Ross

The present study examined physiological and cellular responses to central application of ANG II in ovine fetuses and determined the fetal central ANG-mediated dipsogenic sites in utero. Chronically prepared near-term ovine fetuses (130 ± 2 days) received injection of ANG II (1.5 μg/kg icv). Fetuses were monitored for 3.5 h for swallowing activity, after which animals were killed and fetal brains were perfused for subsequent Fos staining. Intracerebroventricular ANG II significantly increased fetal swallowing in near-term ovine fetuses (1.1 ± 0.2 to 4.5 ± 1.0 swallows/min). The initiation of stimulated fetal swallowing activity was similar to the latency of thirst responses (drinking behavior) elicited by central ANG II in adult animals. ANG II evoked increased Fos staining in putative dipsogenic centers, including the subfornical organ, organum vasculosum of the lamina terminalis, and median preoptic nucleus. Intracerebroventricular injection of ANG II also caused c- fos expression in the fetal hindbrain. These results indicate that an ANG II-mediated central dipsogenic mechanism is intact before birth, acting at sites consistent with the dipsogenic neural network. Central ANG II mechanisms likely contribute to fetal body fluid and amniotic fluid regulation.


2000 ◽  
Vol 84 (3) ◽  
pp. 1681-1691 ◽  
Author(s):  
Werner Kilb ◽  
Heiko J. Luhmann

Cajal-Retzius cells are among the first neurons appearing during corticogenesis and play an important role in the establishment of cortical lamination. To characterize the hyperpolarization-activated inward current ( I h) and to investigate whether I h contributes to the relatively positive resting membrane potential (RMP) of these cells, we analyzed the properties of I h in visually identified Cajal-Retzius cells in cortical slices from neonatal rats using the whole cell patch-clamp technique. Membrane hyperpolarization to −90 mV activated a prominent inward current that was inhibited by 1 mM Cs+ and was insensitive to 1 mM Ba2+. The activation time constant for I h was strongly voltage dependent. In Na+-free solution, I h was reduced, indicating a contribution of Na+. An analysis of the tail currents revealed a reversal potential of −45.2 mV, corresponding to a permeability coefficient (pNa+/pK+) of 0.13. While an increase in the extracellular K+ concentration ([K+]e) enhances I h, it was reduced by a [K+]e decrease. This [K+]e dependence could not be explained by an effect on the electromotive force on K+ but suggested an additional extracellular binding site for K+ with an apparent dissociation constant of 7.2 mM. Complete Cl−substitution by Br−, I−, or NO3 − had no significant effect on I h, whereas a complete Cl−substitution by the organic compounds methylsulfate, isethionate, or gluconate reduced I h by ∼40%. The I h reduction observed in gluconate could be abolished by the addition of Cl−. The analysis of the [Cl−]e dependence of I h revealed a dissociation constant of 9.8 mM and a Hill-coefficient of 2.5, while the assumption of a gluconate-dependent I h reduction required an unreasonably high Hill-coefficient >20. An internal perfusion with the lidocaine derivative lidocaine N-ethyl bromide blocks I h within 1 min after establishment of the whole cell configuration. An inhibition of I h by 1 mM Cs+ was without an effect on RMP, action potential amplitude, threshold, width, or afterhyperpolarization. We conclude from these results that Cajal-Retzius cells express a prominent I hwith characteristic properties that does not contribute to the RMP.


Sign in / Sign up

Export Citation Format

Share Document