Does Reorganization in the Cuneate Nucleus Following Neonatal Forelimb Amputation Influence Development of Anomalous Circuits Within the Somatosensory Cortex?

2008 ◽  
Vol 99 (2) ◽  
pp. 866-875 ◽  
Author(s):  
Richard D. Lane ◽  
Charles P. Pluto ◽  
Cynthia L. Kenmuir ◽  
Nicolas L. Chiaia ◽  
Richard D. Mooney

Neonatal forelimb amputation in rats produces sprouting of sciatic nerve afferent fibers into the cuneate nucleus (CN) and results in 40% of individual CN neurons expressing both forelimb-stump and hindlimb receptive fields. The forelimb-stump region of primary somatosensory cortex (S-I) of these rats contains neurons in layer IV that express both stump and hindlimb receptive fields. However, the source of the aberrant input is the S-I hindlimb region conveyed to the S-I forelimb-stump region via intracortical projections. Although the reorganization in S-I reflects changes in cortical circuitry, it is possible that these in turn are dependent on the CN reorganization. The present study was designed to directly test whether the sprouting of sciatic afferents into the CN is required for expression of the hindlimb inputs in the S-I forelimb-stump field. To inhibit sprouting, neurotrophin-3 (NT-3) was applied to the cut nerves following amputation. At P60 or older, NT-3-treated rats showed minimal sciatic nerve fibers in the CN. Multiunit electrophysiological recordings in the CN of NT-3-treated, amputated rats revealed 6.3% of sites were both stump/hindlimb responsive, compared with 30.5% in saline-treated amputated animals. Evaluation of the S-I following GABA receptor blockade, revealed that the percentage of hindlimb responsive sites in the stump representation of the NT-3-treated rats (34.2%) was not significantly different from that in saline-treated rats (31.5%). These results indicate that brain stem reorganization in the form of sprouting of sciatic afferents into the CN is not necessary for development of anomalous hindlimb receptive fields within the S-I forelimb/stump region.

2021 ◽  
Author(s):  
Aneesha K Suresh ◽  
Charles M. Greenspon ◽  
Qinpu He ◽  
Joshua M Rosenow ◽  
Lee E Miller ◽  
...  

In primates, the responses of individual neurons in primary somatosensory cortex (S1) reflect convergent input from multiple classes of nerve fibers and are selective for behaviorally relevant stimulus features. The conventional view is that these response properties reflect computations that are effected in cortex, implying that sensory signals are not meaningfully processed in the two intervening structures - the Cuneate Nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in CN to a battery of stimuli that have been extensively used to characterize tactile coding, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their S1 counterparts than they are to their inputs: CN neurons receive input from multiple sub-modalities, have spatially complex receptive fields, and exhibit selectivity for geometric features. Thus, CN plays a key role in the processing of tactile information.


1999 ◽  
Vol 81 (2) ◽  
pp. 625-633 ◽  
Author(s):  
Richard D. Lane ◽  
Rey S. Stojic ◽  
Herbert P. Killackey ◽  
Robert W. Rhoades

Source of inappropriate receptive fields in cortical somatotopic maps from rats that sustained neonatal forelimb removal. Previously this laboratory demonstrated that forelimb removal at birth in rats results in the invasion of the cuneate nucleus by sciatic nerve axons and the development of cuneothalamic cells with receptive fields that include both the forelimb-stump and the hindlimb. However, unit-cluster recordings from primary somatosensory cortex (SI) of these animals revealed few sites in the forelimb-stump representation where responses to hindlimb stimulation also could be recorded. Recently we reported that hindlimb inputs to the SI forelimb-stump representation are suppressed functionally in neonatally amputated rats and that GABAergic inhibition is involved in this process. The present study was undertaken to assess the role that intracortical projections from the SI hindlimb representation may play in the functional reorganization of the SI forelimb-stump field in these animals. The SI forelimb-stump representation was mapped during γ-aminobutyric acid (GABA)-receptor blockade, both before and after electrolytic destruction of the SI hindlimb representation. Analysis of eight amputated rats showed that 75.8% of 264 stump recording sites possessed hindlimb receptive fields before destruction of the SI hindlimb. After the lesions, significantly fewer sites (13.2% of 197) were responsive to hindlimb stimulation ( P < 0.0001). Electrolytic destruction of the SI lower-jaw representation in four additional control rats with neonatal forelimb amputation did not significantly reduce the percentage of hindlimb-responsive sites in the SI stump field during GABA-receptor blockade ( P = 0.98). Similar results were obtained from three manipulated rats in which the SI hindlimb representation was silenced temporarily with a local cobalt chloride injection. Analysis of response latencies to sciatic nerve stimulation in the hindlimb and forelimb-stump representations suggested that the intracortical pathway(s) mediating the hindlimb responses in the forelimb-stump field may be polysynaptic. The mean latency to sciatic nerve stimulation at responsive sites in the GABA-receptor blocked SI stump representation of neonatally amputated rats was significantly longer than that for recording sites in the hindlimb representation [26.3 ± 8.1 (SD) ms vs. 10.8 ± 2.4 ms, respectively, P < 0.0001]. These results suggest that hindlimb input to the SI forelimb-stump representation detected in GABA-blocked cortices of neonatally forelimb amputated rats originates primarily from the SI hindlimb representation.


2021 ◽  
Vol 118 (49) ◽  
pp. e2115772118
Author(s):  
Aneesha K. Suresh ◽  
Charles M. Greenspon ◽  
Qinpu He ◽  
Joshua M. Rosenow ◽  
Lee E. Miller ◽  
...  

Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures—the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.


2001 ◽  
Vol 85 (1) ◽  
pp. 407-413 ◽  
Author(s):  
Andrey S. Stojic ◽  
Richard D. Lane ◽  
Robert W. Rhoades

Reorganization of the primary somatosensory cortex (S-I) forelimb-stump representation of rats that sustained neonatal forelimb removal is characterized by the expression of hindlimb inputs that are revealed when cortical GABA receptors are pharmacologically blocked. Recent work has shown that the majority of these inputs are transmitted from the S-I hindlimb representation to the forelimb-stump field via an, as yet, unidentified pathway between these regions. In this study, we tested the possibility that hindlimb inputs to the S-I forelimb-stump representation of neonatally amputated rats are conveyed through an intracortical pathway between the S-I hindlimb and forelimb-stump representations that involves the intervening dysgranular cortex by transiently inactivating this area and evaluating the effect on hindlimb expression in the S-I forelimb-stump representation during GABA receptor blockade. Of 332 S-I forelimb-stump recording sites from six neonatally amputated rats, 68.3% expressed hindlimb inputs during GABA receptor blockade. Inactivation of dysgranular cortex with cobalt chloride (CoCl2) resulted in a significant decrease in the number of hindlimb responsive sites (9.5%, P < 0.001 vs. cortex during GABA receptor blockade before CoCl2 treatment). Results were also compiled from S-I forelimb recording sites from three normal rats: 14.1% of 136 sites were responsive to the hindlimb during GABA receptor blockade, and all of these responses were abolished during inactivation of dysgranular cortex with CoCl2 ( P < 0.05). These results indicate that the S-I hindlimb representation transmits inputs to the forelimb-stump field of neonatally amputated rats through a polysynaptic intracortical pathway involving dysgranular cortex. Furthermore the findings from normal rats suggest that this pathway might reflect the amplification of a neuronal circuit normally present between the two representations.


1990 ◽  
Vol 63 (2) ◽  
pp. 256-272 ◽  
Author(s):  
K. J. Berkley ◽  
H. Hotta ◽  
A. Robbins ◽  
Y. Sato

1. Electrophysiological techniques were used to characterize responses of afferent fibers in pelvic nerve of adult, virgin female rats to mechanical or chemical stimulation of internal reproductive organs and to mechanical stimulation of other pelvic organs. 2. In an in vivo barbiturate-anesthetized preparation, pelvic nerve afferent fibers responded to a wide variety of mechanical stimulation applied to restricted regions of the vaginal canal, caudal uterus (body and cervix), bladder, ureter, colon, or anus. 3. Single-fiber mechanoreceptive fields were invariably confined to a single organ. Notably, responses could be evoked not only by gentle stimulation of the unit's receptive field directly on the organ itself, but also by stimulating the field indirectly with intense stimulation through the appropriate part of a contiguous organ. This innervation feature is consistent with the separability of pelvic organ functions under innocuous conditions but their confusion under noxious ones. 4. Receptive fields on the reproductive organs extended from the caudal edge of the vagina to the uterine body (including the cervix) but were most often located in the fornix (vaginocervical junction). Most units had no or low levels of spontaneous activity. Their responses to mechanical stimuli were usually slowly or moderately adapting and time-locked to the stimulus. 5. Fibers with vaginal receptive fields (including the fornix) responded best either to vaginal distension with a balloon or, more often, to a probe moving along the internal vaginal surface in a direction toward the cervix. They were observed most frequently during the proestrus stage of the rat's estrous cycle. These fibers, therefore, seem particularly suited for relaying information about stimuli that occur during mating. 6. Fibers with receptive fields on the uterine cervix and body responded best to static pressure and were observed less frequently than those with vaginal fields, regardless of estrous stage. They were, however, sensitized by hypoxia. In addition, irritation of the uterus increased the probability of observing them. These fibers, therefore, may exert their primary function during reproductive conditions different from those of virgin rats, such as parturition. 7. Response activity of most of the mechanoreceptive afferent fibers supplying reproductive organs increased as the stimulus intensity increased into the noxious range; i.e., into a range in which the stimulus momentarily produced ischemia at the stimulus site. In addition, in an in vitro preparation, pelvic nerve fibers responded in a dose-dependent manner to injections through the uterine artery of bradykinin (BRAD) as well as to other algesic chemicals, 5-hydroxytryptamine (5-HT) and KCl.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Author(s):  
Qinpu He ◽  
Christopher S Versteeg ◽  
Aneesha K Suresh ◽  
Lee E Miller ◽  
Sliman J Bensmaia

To achieve stable and precise movement execution, the sensorimotor system integrates exafferent sensory signals originating from interactions with the external world and reafferent signals caused by our own movements. This barrage of sensory information is regulated such that behaviorally relevant signals are boosted at the expense of irrelevant ones. For example, sensitivity to touch is reduced during movement - when cutaneous signals caused by skin stretch are expected and uninteresting - a phenomenon reflected in a decreased cutaneous responsiveness in thalamus and cortex. Some evidence suggests that movement gating of touch may originate from the cuneate nucleus (CN), the first recipient of signals from tactile nerve fibers along the dorsal columns medial lemniscal pathway. To test this possibility, we intermittently delivered mechanical pulses to the receptive fields (RFs) of identified cutaneous CN neurons as monkeys performed a reach-to-grasp task. As predicted, we found that the cutaneous responses of individual CN neurons were reduced during movement. However, this movement gating of cutaneous signals was observed for CN neurons with RFs on the arm but not those with RFs on the hand. We conclude that sensory gating occurs in the first processing stage along the somatosensory neuraxis and sculpts incoming signals according to their task relevance.


2001 ◽  
Vol 86 (2) ◽  
pp. 900-911 ◽  
Author(s):  
M. K. Zachariah ◽  
G. T. Coleman ◽  
D. A. Mahns ◽  
H. Q. Zhang ◽  
M. J. Rowe

Transmission from single, identified hair follicle afferent (HFA) nerve fibers to their target neurons of the cuneate nucleus was examined in anesthetized cats by means of paired recording from individual cuneate neurons and from fine, intact fascicles of the lateral branch of the superficial radial nerve in which it is possible to identify and monitor the activity of each group II fiber. Selective activation of individual HFA fibers was achieved by means of focal vibrotactile skin stimulation. Forearm denervation precluded inputs from sources other than the monitored HFA sensory fiber. Transmission characteristics were analyzed for 21 HFA fiber-cuneate neuron pairs in which activity in the single HFA fiber of each pair reliably evoked spike output from the target neuron at a fixed latency. As the cuneate responses to each HFA impulse often consisted of 2 or 3 spikes, in particular at HFA input rates up to ∼20 imp/s, the synaptic linkage displayed potent amplification and high-gain transmission, characteristics that were confirmed quantitatively in measures of transmission security and cuneate spike output measures. In response to vibrotactile stimuli, the tight phase locking in the responses of single HFA fibers was well retained in the cuneate responses for vibration frequencies up to ∼200 Hz. On measures of vector strength, the phase locking declined across the synaptic linkage by no more than ∼10% at frequencies up to 100 Hz. However, limitations on the impulse rates generated in both the HFA fibers their associated cuneate neurons meant that the impulse patterns could not directly signal information about the vibration frequency above 50–100 Hz. Although single HFA fibers are also known to have secure synaptic linkages with spinocervical tract neurons, it is probable that this linkage lacks the capacity of the HFA-cuneate synapse for conveying precise temporal information, in an impulse pattern code, about the frequency parameter of vibrotactile stimuli.


2000 ◽  
Vol 83 (6) ◽  
pp. 3377-3387 ◽  
Author(s):  
Andrey S. Stojic ◽  
Richard D. Lane ◽  
Herbert P. Killackey ◽  
Robert W. Rhoades

Neonatal forelimb removal in rats results in the development of inappropriate hindlimb inputs in the forelimb-stump representation of primary somatosensory cortex (S-I) that are revealed when GABAA and GABAB receptor activity are blocked. Experiments carried out to date have not made clear what information is being suppressed at the level of individual neurons. In this study, three potential ways in which GABA-mediated inhibition could suppress hindlimb expression in the S-I stump representation were evaluated: silencing S-I neurons with dual stump and hindlimb receptive fields, silencing neurons with receptive fields restricted to the hindlimb alone, and/or selective silencing of hindlimb inputs to neurons that normally express a stump receptive field only. These possibilities were tested using single-unit recording techniques to evaluate the receptive fields of S-I forelimb-stump neurons before, during, and after blockade of GABA receptors with bicuculline methiodide (for GABAA) and saclofen (for GABAB). Recordings were also made from normal rats for comparison. Of 92 neurons recorded from the S-I stump representation of neonatally amputated rats, only 2.2% had receptive fields that included the hindlimb prior to GABA receptor blockade. During GABA receptor blockade, 54.3% of these cells became responsive to the hindlimb, and in all but two cases, these same neurons also expressed a stump receptive field. Most of these cells (82.0%) expressed only stump receptive fields prior to GABA receptor blockade. In 71 neurons recorded from normal rats, only 5 became responsive to the hindlimb during GABA receptor blockade. GABA receptor blockade of cortical neurons, in both normal and neonatally amputated rats, resulted in significant enlargements of receptive fields as well as the emergence of receptive fields for neurons that were normally unresponsive. GABA receptor blockade also resulted in increases in both the spontaneous activity and response magnitudes of these neurons. These data support the conclusion that GABA mechanisms generally act to specifically suppress hindlimb inputs to S-I forelimb-stump neurons that normally express a receptive field on the forelimb stump only.


1986 ◽  
Vol 56 (5) ◽  
pp. 1268-1283 ◽  
Author(s):  
R. E. Fyffe ◽  
S. S. Cheema ◽  
A. Rustioni

The terminal arborizations of single identified cutaneous hair follicle and slowly adapting type I receptors and muscle (Ia) afferents have been studied in the cuneate nucleus of cats after intra-axonal injection of horseradish peroxidase. Penetrations were mainly at the middle and caudal levels of the nucleus--i.e., from obex to approximately 7 mm caudal to it. Following histochemical processing, the injected axons, along with their collateral branches and synaptic terminals, were visualized and examined with light and electron microscopy. Cutaneous afferents in middle cuneate (from obex to approximately 4 mm caudal to it) issued collateral branches, along the rostrocaudal axis of the nucleus, at intervals between 100 and 1,000 microns. The terminal field of each collateral's branches encompassed an area elongated largely rostrocaudally and virtually confined to the dorsal part of the middle cuneate. Although adjacent collaterals had nonoverlapping terminal arborizations, each one could give rise to separate foci of terminations. Muscle afferents differed, on the whole, from cutaneous afferents in the location and extent of collateral branching and terminal arborizations. However, because muscle fibers terminated primarily in the ventral region of the cuneate, but nevertheless exhibited sparser terminations in the dorsal part of the middle cuneate, there was some spatial overlap between zones of muscle and cutaneous projection. Synaptic boutons of cutaneous afferent fibers contained round clear vesicles, contacted dendritic profiles (sometimes more than one), and were postsynaptic to small boutons containing polymorphic vesicles. In contrast, boutons of muscle afferent fibers contacted somatic and dendritic profiles and were not postsynaptic to other boutons. The results are in general agreement with previous anatomical and electrophysiological work; however, the extent of the terminal field of single collateral branches may provide for a greater convergence of different receptor classes and of receptive fields on neurons in the middle cuneate than estimated by previous electrophysiological investigations.


Sign in / Sign up

Export Citation Format

Share Document