Transmission Security for Single, Hair Follicle–Related Tactile Afferent Fibers and Their Target Cuneate Neurons in Cat

2001 ◽  
Vol 86 (2) ◽  
pp. 900-911 ◽  
Author(s):  
M. K. Zachariah ◽  
G. T. Coleman ◽  
D. A. Mahns ◽  
H. Q. Zhang ◽  
M. J. Rowe

Transmission from single, identified hair follicle afferent (HFA) nerve fibers to their target neurons of the cuneate nucleus was examined in anesthetized cats by means of paired recording from individual cuneate neurons and from fine, intact fascicles of the lateral branch of the superficial radial nerve in which it is possible to identify and monitor the activity of each group II fiber. Selective activation of individual HFA fibers was achieved by means of focal vibrotactile skin stimulation. Forearm denervation precluded inputs from sources other than the monitored HFA sensory fiber. Transmission characteristics were analyzed for 21 HFA fiber-cuneate neuron pairs in which activity in the single HFA fiber of each pair reliably evoked spike output from the target neuron at a fixed latency. As the cuneate responses to each HFA impulse often consisted of 2 or 3 spikes, in particular at HFA input rates up to ∼20 imp/s, the synaptic linkage displayed potent amplification and high-gain transmission, characteristics that were confirmed quantitatively in measures of transmission security and cuneate spike output measures. In response to vibrotactile stimuli, the tight phase locking in the responses of single HFA fibers was well retained in the cuneate responses for vibration frequencies up to ∼200 Hz. On measures of vector strength, the phase locking declined across the synaptic linkage by no more than ∼10% at frequencies up to 100 Hz. However, limitations on the impulse rates generated in both the HFA fibers their associated cuneate neurons meant that the impulse patterns could not directly signal information about the vibration frequency above 50–100 Hz. Although single HFA fibers are also known to have secure synaptic linkages with spinocervical tract neurons, it is probable that this linkage lacks the capacity of the HFA-cuneate synapse for conveying precise temporal information, in an impulse pattern code, about the frequency parameter of vibrotactile stimuli.

2008 ◽  
Vol 99 (2) ◽  
pp. 866-875 ◽  
Author(s):  
Richard D. Lane ◽  
Charles P. Pluto ◽  
Cynthia L. Kenmuir ◽  
Nicolas L. Chiaia ◽  
Richard D. Mooney

Neonatal forelimb amputation in rats produces sprouting of sciatic nerve afferent fibers into the cuneate nucleus (CN) and results in 40% of individual CN neurons expressing both forelimb-stump and hindlimb receptive fields. The forelimb-stump region of primary somatosensory cortex (S-I) of these rats contains neurons in layer IV that express both stump and hindlimb receptive fields. However, the source of the aberrant input is the S-I hindlimb region conveyed to the S-I forelimb-stump region via intracortical projections. Although the reorganization in S-I reflects changes in cortical circuitry, it is possible that these in turn are dependent on the CN reorganization. The present study was designed to directly test whether the sprouting of sciatic afferents into the CN is required for expression of the hindlimb inputs in the S-I forelimb-stump field. To inhibit sprouting, neurotrophin-3 (NT-3) was applied to the cut nerves following amputation. At P60 or older, NT-3-treated rats showed minimal sciatic nerve fibers in the CN. Multiunit electrophysiological recordings in the CN of NT-3-treated, amputated rats revealed 6.3% of sites were both stump/hindlimb responsive, compared with 30.5% in saline-treated amputated animals. Evaluation of the S-I following GABA receptor blockade, revealed that the percentage of hindlimb responsive sites in the stump representation of the NT-3-treated rats (34.2%) was not significantly different from that in saline-treated rats (31.5%). These results indicate that brain stem reorganization in the form of sprouting of sciatic afferents into the CN is not necessary for development of anomalous hindlimb receptive fields within the S-I forelimb/stump region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdelrahman M. Alhilou ◽  
Akiko Shimada ◽  
Camilla I. Svensson ◽  
Peter Svensson ◽  
Malin Ernberg ◽  
...  

AbstractNocifensive behavior induced by injection of glutamate or nerve growth factor (NGF) into rats masseter muscle is mediated, in part, through the activation of peripheral NMDA receptors. However, information is lacking about the mechanism that contributes to pain and sensitization induced by these substances in humans. Immunohistochemical analysis of microbiopsies obtained from human masseter muscle was used to investigate if injection of glutamate into the NGF-sensitized masseter muscle alters the density or expression of the NMDA receptor subtype 2B (NR2B) or NGF by putative sensory afferent (that express SP) fibers. The relationship between expression and pain characteristics was also examined. NGF and glutamate administration increased the density and expression of NR2B and NGF by muscle putative sensory afferent fibers (P < 0.050). This increase in expression was greater in women than in men (P < 0.050). Expression of NR2B receptors by putative sensory afferent fibers was positively correlated with pain characteristics. Results suggest that increased expression of peripheral NMDA receptors partly contributes to the increased pain and sensitivity induced by intramuscular injection of NGF and glutamate in healthy humans; a model of myofascial temporomandibular disorder (TMD) pain. Whether a similar increase in peripheral NMDA expression occurs in patients with painful TMDs warrants further investigation.


2004 ◽  
Vol 91 (5) ◽  
pp. 2051-2065 ◽  
Author(s):  
Dries H. G. Louage ◽  
Marcel van der Heijden ◽  
Philip X. Joris

Temporal information in the responses of auditory neurons to sustained sounds has been studied mostly with periodic stimuli, using measures that are based on Fourier analysis. Less information is available on temporal aspects of responses to nonperiodic wideband sounds. We recorded responses to a reference Gaussian noise and its polarity-inverted version in the auditory nerve of barbiturate-anesthetized cats and used shuffled autocorrelograms (SACs) to quantify spike timing. Two metrics were extracted from the central peak of autocorrelograms: the peak-height and the width at halfheight. Temporal information related to stimulus fine-structure was isolated from that to envelope by subtracting or adding responses to the reference and inverted noise. Peak-height and halfwidth generally behaved as expected from the existing body of data on phase-locking to pure tones and sinusoidally amplitude-modulated tones but showed some surprises as well. Compared with synchronization to low-frequency tones, SACs reveal large differences in temporal behavior between the different classes of nerve fibers (based on spontaneous rate) as well as a strong dependence on characteristic frequency (CF) throughout the phase-locking range. SACs also reveal a larger temporal consistency (i.e., tendency to discharge at the same point in time on repeated presentation of the same stimulus) in the responses to the stochastic noise stimulus than in the responses to periodic tones. Responses at high CFs reflect envelope phase-locking and are consistent with previous reports using sinusoidal AM. We conclude that the combined use of broadband noise and SAC analysis allow a more general characterization of temporal behavior than periodic stimuli and Fourier analysis.


2005 ◽  
Vol 93 (1) ◽  
pp. 557-569 ◽  
Author(s):  
Annette M. Taberner ◽  
M. Charles Liberman

The availability of transgenic and mutant lines makes the mouse a valuable model for study of the inner ear, and a powerful window into cochlear function can be obtained by recordings from single auditory nerve (AN) fibers. This study provides the first systematic description of spontaneous and sound-evoked discharge properties of AN fibers in mouse, specifically in CBA/CaJ and C57BL/6 strains, both commonly used in auditory research. Response properties of 196 AN fibers from CBA/CaJ and 58 from C57BL/6 were analyzed, including spontaneous rates (SR), tuning curves, rate versus level functions, dynamic range, response adaptation, phase-locking, and the relation between SR and these response properties. The only significant interstrain difference was the elevation of high-frequency thresholds in C57BL/6. In general, mouse AN fibers showed similar responses to other mammals: sharpness of tuning increased with characteristic frequency, which ranged from 2.5 to 70 kHz; SRs ranged from 0 to 120 sp/s, and fibers with low SR (<1 sp/s) had higher thresholds, and wider dynamic ranges than fibers with high SR. Dynamic ranges for mouse high-SR fibers were smaller (<20 dB) than those seen in other mammals. Phase-locking was seen for tone frequencies <4 kHz. Maximum synchronization indices were lower than those in cat but similar to those found in guinea pig.


2021 ◽  
Vol 118 (49) ◽  
pp. e2115772118
Author(s):  
Aneesha K. Suresh ◽  
Charles M. Greenspon ◽  
Qinpu He ◽  
Joshua M. Rosenow ◽  
Lee E. Miller ◽  
...  

Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures—the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.


1996 ◽  
Vol 76 (1) ◽  
pp. 242-254 ◽  
Author(s):  
P. Wilson ◽  
P. D. Kitchener ◽  
P. J. Snow

1. The morphology and somatotopic organization of the spinal arborizations of identified A beta-hair follicle afferent fibers (HFAs) with receptive fields (RFs) on the digits have been investigated in the cat by the use of intraaxonal injection of the tracer n-(2 aminoethyl) biotinamide. 2. In three cats, the long-ranging projections of six HFAs were examined by selectively injecting afferents with RFs on digit 2, 4, or 5, directly over the digit 3 representation, and examining their collateral morphology in transverse sections of the spinal cord. The rostral and caudal boundaries of the digit 3 representation were determined by mapping the RFs of identified spinocervical tract (SCT) neurons. 3. In two more cats, three HFAs were injected at random rostrocaudal positions and their morphology was examined in parasagittal sections. In one animal (2 HFAs), the somatotopy of the digit representation was again determined by mapping the RFs of SCT neurons. In the remaining cat (1 HFA), the somatotopy of the dorsal horn was mapped from the RFs of unidentified dorsal horn neurons. 4. Hair follicle afferents emitted many more collaterals, over much greater rostrocaudal distances, than indicated by previous horseradish peroxidase studies, and all collaterals gave rise to synaptic boutons. 5. HFAs that have RFs confined to a small part of a digit give rise to bouton-bearing axonal branches throughout the entire rostrocaudal extent of the hindpaw representation.


2014 ◽  
Vol 111 (3) ◽  
pp. 580-593 ◽  
Author(s):  
Mathieu Forgues ◽  
Heather A. Koehn ◽  
Askia K. Dunnon ◽  
Stephen H. Pulver ◽  
Craig A. Buchman ◽  
...  

Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients.


1984 ◽  
Vol 93 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Aage R. Møsller

The hypothesis is presented that certain forms of tinnitus are related to abnormal phase-locking of discharges in groups of auditory nerve fibers. Recent developments in auditory neurophysiology have shown that neural coding of the temporal pattern of sounds plays an important role in the analysis of complex sounds. In addition, it has been demonstrated that when some other cranial nerves are damaged, artificial synapses can occur between individual nerve fibers such that ephaptic transmission between nerve fibers is facilitated. Such “crosstalk” between auditory nerve fibers is assumed to result in phase-locking of the spontaneous activity of groups of neurons which in the absence of external sounds creates a neural pattern that resembles that evoked by sounds.


Sign in / Sign up

Export Citation Format

Share Document