scholarly journals Integration of texture and disparity cues to surface slant in dorsal visual cortex

2013 ◽  
Vol 110 (1) ◽  
pp. 190-203 ◽  
Author(s):  
Aidan P. Murphy ◽  
Hiroshi Ban ◽  
Andrew E. Welchman

Reliable estimation of three-dimensional (3D) surface orientation is critical for recognizing and interacting with complex 3D objects in our environment. Human observers maximize the reliability of their estimates of surface slant by integrating multiple depth cues. Texture and binocular disparity are two such cues, but they are qualitatively very different. Existing evidence suggests that representations of surface tilt from each of these cues coincide at the single-neuron level in higher cortical areas. However, the cortical circuits responsible for 1) integration of such qualitatively distinct cues and 2) encoding the slant component of surface orientation have not been assessed. We tested for cortical responses related to slanted plane stimuli that were defined independently by texture, disparity, and combinations of these two cues. We analyzed the discriminability of functional MRI responses to two slant angles using multivariate pattern classification. Responses in visual area V3B/KO to stimuli containing congruent cues were more discriminable than those elicited by single cues, in line with predictions based on the fusion of slant estimates from component cues. This improvement was specific to congruent combinations of cues: incongruent cues yielded lower decoding accuracies, which suggests the robust use of individual cues in cases of large cue conflicts. These data suggest that area V3B/KO is intricately involved in the integration of qualitatively dissimilar depth cues.

2001 ◽  
Vol 86 (6) ◽  
pp. 2856-2867 ◽  
Author(s):  
Ken-Ichiro Tsutsui ◽  
Min Jiang ◽  
Kazuo Yara ◽  
Hideo Sakata ◽  
Masato Taira

We investigated the effects of linear perspective and binocular disparity, as monocular and binocular depth cues, respectively, on the response of surface-orientation–selective (SOS) neurons in the caudal part of the lateral bank of the intraparietal sulcus (area CIP). During the single-unit recording, monkeys were required to perform the delayed-matching-to-sample (successive same/different discrimination) of discriminating surface orientation in stereoscopic computer graphics. Of 211 visually responsive neurons, 66 were intensively tested using the solid-figure stereogram (SFS) of a square plate with both disparity and perspective cues (D+P condition), and 62 of these were identified as SOS neurons for responding selectively to the orientation of stimuli. All these neurons were further tested using a solid figure with perspective cues alone (P-only condition), and 58% (36/62) of these showed selective response to the orientation of the stimuli. Of the 62 SOS neurons, 35 neurons were also tested using SFS with disparity cues alone (D-only condition) in addition to the D+P and P-only conditions. We classified these 35 neurons into four groups by comparing the response selectivity under the P-only and D-only conditions. More than one-half of these (19/35) were sensitive to both perspective and disparity cues (DP neurons), and nearly one-third (11/35) of these were sensitive to disparity cues alone (D neurons), but a few (2/35) were sensitive to perspective cues alone (P neurons). The remaining (3/35) neurons exhibited orientation selectivity only when both cues were present. In DP neurons, the preferred orientation under the D+P condition was correlated to those under the D-only and P-only conditions, and the response magnitude under the D+P condition was greater than those under the D-only and P-only conditions, suggesting the integration of both cues for the perception of surface orientation. However, in these neurons, the orientation tuning sharpness under the D+P and D-only conditions was higher than that under the P-only condition, suggesting the dominance of disparity cues. After the single-unit recording experiments, muscimol was microinjected into the recording site to temporarily inactivate its function. In all three effective cases out of six microinjection experiments, discrimination of a three-dimensional (3D) surface orientation was impaired when disparity cues alone were present. In only one effective case, when a relatively large amount of muscimol was microinjected, discrimination of a 3D surface orientation was impaired even when both disparity and perspective cues were present. These results suggest that linear perspective is an important cue for representations of a 3D surface of SOS neurons in area CIP, although it is less effective than binocular disparity, and that both of these depth cues may be integrated in area CIP for the perception of surface orientation in depth.


2005 ◽  
Vol 93 (1) ◽  
pp. 620-626 ◽  
Author(s):  
Jay Hegdé ◽  
David C. Van Essen

Disparity tuning in visual cortex has been shown using a variety of stimulus types that contain stereoscopic depth cues. It is not known whether different stimuli yield similar disparity tuning curves. We studied whether cells in visual area V4 of the macaque show similar disparity tuning profiles when the same set of disparity values were tested using bars or dynamic random dot stereograms, which are among the most commonly used stimuli for this purpose. In a majority of V4 cells (61%), the shape of the disparity tuning profile differed significantly for the two stimulus types. The two sets of stimuli yielded statistically indistinguishable disparity tuning profiles for only a small minority (6%) of V4 cells. These results indicate that disparity tuning in V4 is stimulus-dependent. Given the fact that bar stimuli contain two-dimensional (2-D) shape cues, and the random dot stereograms do not, our results also indicate that V4 cells represent 2-D shape and binocular disparity in an interdependent fashion, revealing an unexpected complexity in the analysis of depth and three-dimensional shape.


2004 ◽  
Vol 91 (3) ◽  
pp. 1350-1366 ◽  
Author(s):  
David C. Knill ◽  
Daniel Kersten

We measured human visuomotor sensitivity to visual information about three-dimensional surface orientation by analyzing movements made to place an object on a slanted surface. We applied linear discriminant analysis to the kinematics of subjects' movements to surfaces with differing slants (angle away form the fronto-parallel) to derive visuomotor d′s for discriminating surfaces differing in slant by 5°. Subjects' visuomotor sensitivity to information about surface orientation was very high, with discrimination “thresholds” ranging from 2 to 3 degrees. In a first experiment, we found that subjects performed only slightly better using binocular cues alone than monocular texture cues and that they showed only weak evidence for combining the cues when both were available, suggesting that monocular cues can be just as effective in guiding motor behavior in depth as binocular cues. In a second experiment, we measured subjects' perceptual discrimination and visuomotor thresholds in equivalent stimulus conditions to decompose visuomotor sensitivity into perceptual and motor components. Subjects' visuomotor thresholds were found to be slightly greater than their perceptual thresholds for a range of memory delays, from 1 to 3 s. The data were consistent with a model in which perceptual noise increases with increasing delay between stimulus presentation and movement initiation, but motor noise remains constant. This result suggests that visuomotor and perceptual systems rely on the same visual estimates of surface slant for memory delays ranging from 1 to 3 s.


Author(s):  
Woodrow Barfield ◽  
Craig Rosenberg

The purpose of this study was to investigate the use of three-dimensional display formats for judgments of spatial information using an exocentric frame of reference. Eight subjects judged the azimuth and elevation that separated two computer-generated objects using either a perspective or stereoscopic display. Errors, which consisted of the difference in absolute value between the estimated and actual azimuth or elevation, were analyzed as the response variable. The data indicated that the stereoscopic display resulted in more accurate estimates of elevation, especially for images aligned approximately orthogonally to the viewing vector. However, estimates of relative azimuth direction were not improved by use of the stereoscopic display. Furthermore, it was shown that the effect of compression resulting from a 45--deg computer graphics eye point elevation produced a response bias that was symmetrical around the horizontal plane of the reference cube, and that the depth cue of binocular disparity provided by the stereoscopic display reduced the magnitude of the compression errors. Implications of the results for the design of spatial displays are discussed.


2000 ◽  
Vol 83 (5) ◽  
pp. 3140-3146 ◽  
Author(s):  
Masato Taira ◽  
Ken-Ichiro Tsutsui ◽  
Min Jiang ◽  
Kazuo Yara ◽  
Hideo Sakata

In order to elucidate the neural mechanisms involved in the perception of the three-dimensional (3D) orientation of a surface, we trained monkeys to discriminate the 3D orientation of a surface from binocular disparity cues using a Go/No-go type delayed-matching-to-sample (DMTS) task and examined the properties of the surface-orientation–selective (SOS) neurons. We recorded 57 SOS neurons from the caudal part of the lateral bank of the intraparietal sulcus (area CIP) of three hemispheres of two Japanese monkeys ( Macaca fuscata). We tested 29 of 57 SOS neurons using the square plate of a solid figure stereogram (SFS) and random-dot stereogram (RDS) without perspective cues; almost all of the tested neurons (28/29) showed surface orientation selectivity for the SFS and/or the RDS without perspective cues. Eight of these 28 neurons (28.6%) showed selectivity for both the RDS and SFS, 7 (25.0%) were dominantly selective for the RDS, and 13 (46.4%) were dominantly selective for the SFS. These results suggest that neurons that show surface orientation tuning for the RDS without perspective cues compute surface orientation from the gradient of the binocular disparity given by the random-dot across the surface. On the other hand, neurons that show surface orientation tuning for the SFS without perspective cues may represent surface orientation primarily from the gradient of the binocular disparity along the contours. In conclusion, the SOS neurons in the area CIP are likely to operate higher order processing of disparity signals for surface perception by integrating the input signals from many disparity-sensitive neurons with different disparity tuning.


Author(s):  
Yei-Yu Yeh ◽  
Louis D. Silverstein

Spatial judgments with monoscopic and stereoscopic presentation of perspective displays were investigated in the present study. The stimulus configuration emulated a visual scene consisting of a volume of airspace above a ground reference plane. Two target symbols were situated at various positions in the space, and observers were instructed to identify the relative depth or altitude of the two symbols. Three viewing orientations (15, 45, or 90 deg elevation angle) were implemented in the perspective projection. In the monoscopic view, depth cues in size, brightness, occlusion, and linear perspective were provided in the format. In the stereoscopic view, binocular disparity was added along the line of sight from the center of projection to reinforce the relative depth in the visual scene. Results revealed that spatial judgments were affected by manipulation of the relative spatial positions of the two target symbols and by the interaction between relative position and viewing orientation. The addition of binocular disparity improved judgments of three-dimensional spatial relationships, and the enhancement was greater when monocular depth cues were less effective and/or ambiguous in recovering the three-dimensional spatial characteristics.


2020 ◽  
Vol 3 (1) ◽  
pp. 10501-1-10501-9
Author(s):  
Christopher W. Tyler

Abstract For the visual world in which we operate, the core issue is to conceptualize how its three-dimensional structure is encoded through the neural computation of multiple depth cues and their integration to a unitary depth structure. One approach to this issue is the full Bayesian model of scene understanding, but this is shown to require selection from the implausibly large number of possible scenes. An alternative approach is to propagate the implied depth structure solution for the scene through the “belief propagation” algorithm on general probability distributions. However, a more efficient model of local slant propagation is developed as an alternative.The overall depth percept must be derived from the combination of all available depth cues, but a simple linear summation rule across, say, a dozen different depth cues, would massively overestimate the perceived depth in the scene in cases where each cue alone provides a close-to-veridical depth estimate. On the other hand, a Bayesian averaging or “modified weak fusion” model for depth cue combination does not provide for the observed enhancement of perceived depth from weak depth cues. Thus, the current models do not account for the empirical properties of perceived depth from multiple depth cues.The present analysis shows that these problems can be addressed by an asymptotic, or hyperbolic Minkowski, approach to cue combination. With appropriate parameters, this first-order rule gives strong summation for a few depth cues, but the effect of an increasing number of cues beyond that remains too weak to account for the available degree of perceived depth magnitude. Finally, an accelerated asymptotic rule is proposed to match the empirical strength of perceived depth as measured, with appropriate behavior for any number of depth cues.


Sign in / Sign up

Export Citation Format

Share Document