Transmitted light brightfield mosaic microscopy for three-dimensional tracing of single neuron morphology

2007 ◽  
Vol 12 (6) ◽  
pp. 064029 ◽  
Author(s):  
Marcel Oberlaender
Author(s):  
Santosh Bhattacharyya

Three dimensional microscopic structures play an important role in the understanding of various biological and physiological phenomena. Structural details of neurons, such as the density, caliber and volumes of dendrites, are important in understanding physiological and pathological functioning of nervous systems. Even so, many of the widely used stains in biology and neurophysiology are absorbing stains, such as horseradish peroxidase (HRP), and yet most of the iterative, constrained 3D optical image reconstruction research has concentrated on fluorescence microscopy. It is clear that iterative, constrained 3D image reconstruction methodologies are needed for transmitted light brightfield (TLB) imaging as well. One of the difficulties in doing so, in the past, has been in determining the point spread function of the system.We have been developing several variations of iterative, constrained image reconstruction algorithms for TLB imaging. Some of our early testing with one of them was reported previously. These algorithms are based on a linearized model of TLB imaging.


2018 ◽  
Author(s):  
Chawin Ounkomol ◽  
Sharmishtaa Seshamani ◽  
Mary M. Maleckar ◽  
Forrest Collman ◽  
Gregory R. Johnson

Understanding living cells as integrated systems, a challenge central to modern biology, is complicated by limitations of available imaging methods. While fluorescence microscopy can resolve subcellular structure in living cells, it is expensive, slow, and damaging to cells. Here, we present a label-free method for predicting 3D fluorescence directly from transmitted light images and demonstrate that it can be used to generate multi-structure, integrated images.


1996 ◽  
Author(s):  
Chrysanthe Preza ◽  
Donald L. Snyder ◽  
Jose-Angel Conchello

1973 ◽  
Vol 47 (2) ◽  
pp. 119-126 ◽  
Author(s):  
J. M. Goldsmid ◽  
N. F. Lyons

The present paper describes the size range ofTernidens deminutusfrom human and baboon hosts in Rhodesia and discusses the possible reasons for the differences noted.Using transmitted light and the scanning electron microscope, the external morphology ofT. deminutushas been re-studied and compared to investigations by other authors using transmitted light microscopy alone.The paper also illustrates the value of the scanning electron microscope in morphological studies in helminthology, especially when used in conjunction with the light microscope, to give an excellent three-dimensional picture of the species under investigation.It is intended to follow this work with further studies on the anatomy, histology, ultrastructure and histochemistry ofTernidens deminutus.


2019 ◽  
Author(s):  
Yimin Wang ◽  
Qi Li ◽  
Lijuan Liu ◽  
Zhi Zhou ◽  
Yun Wang ◽  
...  

AbstractNeuron morphology is recognized as a key determinant of cell type, yet the quantitative profiling of a mammalian neuron’s complete three-dimensional (3-D) morphology remains arduous when the neuron has complex arborization and long projection. Whole-brain reconstruction of neuron morphology is even more challenging as it involves processing tens of teravoxels of imaging data. Validating such reconstructions is extremely laborious. We developed TeraVR, an open-source virtual reality annotation system, to address these challenges. TeraVR integrates immersive and collaborative 3-D visualization, interaction, and hierarchical streaming of teravoxel-scale images. Using TeraVR, we produced precise 3-D full morphology of long-projecting neurons in whole mouse brains and developed a collaborative workflow for highly accurate neuronal reconstruction.


2013 ◽  
Vol 110 (1) ◽  
pp. 190-203 ◽  
Author(s):  
Aidan P. Murphy ◽  
Hiroshi Ban ◽  
Andrew E. Welchman

Reliable estimation of three-dimensional (3D) surface orientation is critical for recognizing and interacting with complex 3D objects in our environment. Human observers maximize the reliability of their estimates of surface slant by integrating multiple depth cues. Texture and binocular disparity are two such cues, but they are qualitatively very different. Existing evidence suggests that representations of surface tilt from each of these cues coincide at the single-neuron level in higher cortical areas. However, the cortical circuits responsible for 1) integration of such qualitatively distinct cues and 2) encoding the slant component of surface orientation have not been assessed. We tested for cortical responses related to slanted plane stimuli that were defined independently by texture, disparity, and combinations of these two cues. We analyzed the discriminability of functional MRI responses to two slant angles using multivariate pattern classification. Responses in visual area V3B/KO to stimuli containing congruent cues were more discriminable than those elicited by single cues, in line with predictions based on the fusion of slant estimates from component cues. This improvement was specific to congruent combinations of cues: incongruent cues yielded lower decoding accuracies, which suggests the robust use of individual cues in cases of large cue conflicts. These data suggest that area V3B/KO is intricately involved in the integration of qualitatively dissimilar depth cues.


Sign in / Sign up

Export Citation Format

Share Document