scholarly journals Fast and Slow Locomotor Burst Generation in the Hemispinal Cord of the Lamprey

2003 ◽  
Vol 89 (6) ◽  
pp. 2931-2942 ◽  
Author(s):  
Lorenzo Cangiano ◽  
Sten Grillner

A fundamental question in vertebrate locomotion is whether distinct spinal networks exist that are capable of generating rhythmic output for each group of muscle synergists. In many vertebrates including the lamprey, it has been claimed that burst activity depends on reciprocal inhibition between antagonists. This question was addressed in the isolated lamprey spinal cord in which the left and right sides of each myotome display rhythmic alternating activity. We sectioned the spinal cord along the midline and tested whether rhythmic motor activity could be induced in the hemicord with bath-applied d-glutamate or N-methyl-d-aspartate (NMDA) as in the intact spinal cord or by brief trains of electrical stimuli. Fast rhythmic bursting (2–12 Hz), coordinated across ventral roots, was observed with all three methods. Furthermore, to diminish gradually the crossed glycinergic inhibition, a progressive surgical lesioning of axons crossing the midline was implemented. This resulted in a gradual increase in burst frequency, linking firmly the fast hemicord rhythm [6.6 ± 1.7 (SD) Hz] to fictive swimming in the intact cord (2.4 ± 0.7 Hz). Ipsilateral glycinergic inhibition was not required for the hemicord burst pattern generation, suggesting that an interaction between excitatory glutamatergic neurons suffices to produce the unilateral burst pattern. In NMDA, burst activity at a much lower rate (0.1–0.4 Hz) was also encountered, which required the voltage-dependent properties of NMDA receptors in contrast to the fast rhythm. Swimming is thus produced by pairs of unilateral burst generating networks with reciprocal inhibitory connections that not only ensure left/right alternation but also downregulate frequency.

1993 ◽  
Vol 69 (3) ◽  
pp. 647-657 ◽  
Author(s):  
J. Tegner ◽  
T. Matsushima ◽  
A. el Manira ◽  
S. Grillner

1. The effect of spinal GABAergic neurons on the segmental neuronal network generating locomotion has been analyzed in the lamprey spinal cord in vitro. It is shown that gamma-aminobutyric acid (GABA)A- and GABAB-mediated effects influence the burst frequency and the intersegmental coordination and that the GABA system is active during normal locomotor activity. 2. Fictive locomotor activity was induced by superfusing the spinal cord with a Ringer solution containing N-methyl-D-aspartate (NMDA, 150 microM). The efferent locomotor activity was recorded by suction electrodes from the ventral roots or intracellularly from interneurons or motoneurons. If a GABA uptake blocker was added to the perfusate, the burst rate decreased. This effect was counteracted by GABAB receptor blockade by phaclofen or 2-(OH)-saclofen. If instead a GABAB receptor agonist (baclofen) was added during fictive locomotion, a depression of the burst rate occurred. It was concluded that a GABAB receptor activation due to an endogenous release of GABA caused a depression of the burst activity with a maintained well-coordinated locomotor activity. 3. If a GABAA receptor antagonist (bicuculline) is applied during fictive locomotion elicited by NMDA, a certain increase of the burst rate occurred. Conversely, if a selective GABAA agonist (muscimol) was administered, the burst rate decreased. Similarly, if the GABAA receptor activity was potentiated by activation of a benzodiazepine site by diazepam, the burst rate was reduced. If, however the GABAergic effect was first enhanced by an uptake blocker (nipecotic acid), an administration of a GABAA antagonist (bicuculline) increased the burst rate, but in addition, the burst pattern became less regular with recurrent shorter periods without clear reciprocal burst activity. The GABAA receptor activity appears important for the rate control and for permitting a regular burst pattern. 4. The intersegmental coordination in the lamprey is characterized by a rostrocaudal constant phase lag of approximately 1% of the cycle duration between the activation of consecutive segments during forward swimming. This rostrocaudal phase lag can be reversed during backward swimming, which can be induced also experimentally in the isolated spinal cord by providing a higher excitability to the caudal segments. In a split-bath configuration, a GABA uptake blocker or a GABAB agonist was administered to the rostral part of the spinal cord, which caused a reversal of the phase lag as during backward swimming. If GABAA receptors were blocked under similar conditions, the intersegmental coordination became irregular. It is concluded that an increased GABA activity in a spinal cord region can modify the intersegmental coordination.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 72 (4) ◽  
pp. 1810-1829 ◽  
Author(s):  
A. Hagevik ◽  
A. D. McClellan

1. Receptor blockers for inhibitory amino acids were applied to part or all of the spinal cord of larval lamprey during brain stem-initiated locomotor activity. Blocking glycinergic inhibition with strychnine applied to the entire spinal cord converted the locomotor pattern from left-right alternation to synchronous left-right bursting. The results suggest that left and right oscillators are connected by relatively strong reciprocal inhibitory (glycinergic) connections in parallel with weaker reciprocal excitatory connections. This possible organization was supported by results from a computer model consisting of left and right oscillators connected by reciprocal inhibition and excitation in parallel. In addition, the results suggest that reciprocal inhibition is not required for left-right rhythmicity but rather is involved primarily with phasing of left-right activity. 2. Locally blocking glycinergic inhibition with strychnine in the rostral spinal cord resulted in synchronous left-right burst activity in that region of the cord as well as in more caudal areas of the cord in which reciprocal inhibition should still be functional. 3. Blocking glycinergic inhibition in the caudal spinal cord converted the pattern in that region of the cord to left-right synchronous activity. The effects in the ascending direction on the burst patterns in more rostral areas of the spinal cord were less than those mentioned above in the descending direction with application of strychnine to the rostral spinal cord. 4. With glycinergic inhibition or GABAergic inhibition blocked in the entire spinal cord, stable longitudinal coupling along the spinal cord persisted. This and the neurophysiology results mentioned above suggest that the main mechanism for longitudinal coupling between locomotor networks in adjacent regions of the spinal cord is ipsilateral excitatory connections and not crossed inhibitory connections. This possible organization was supported by results from a computer model, which consisted of a pair of oscillators in the more rostral and more caudal spinal cord that could be connected by various types of coupling schemes. 5. The neurophysiological data above suggest that ipsilateral, excitatory coupling is stronger in the descending direction than in the ascending direction. In the computer model, a dominant descending coupling is a necessary requirement to produce positive longitudinal phase lags.


2013 ◽  
Vol 110 (2) ◽  
pp. 286-296 ◽  
Author(s):  
Carolina Thörn Pérez ◽  
Russell H. Hill ◽  
Sten Grillner

Substance P is endogenously released within the locomotor network of the adult lamprey, accelerates the burst frequency of fictive locomotion, and reduces the reciprocal inhibition. Previous studies have shown that dopamine, serotonin, and GABA regulate calcium channels, which control neurotransmitter release, action potential duration, and slow afterhyperpolarization (sAHP). Here we examine the effect of substance P on calcium channels in motoneurons and commissural interneurons using whole cell patch clamp in the lamprey spinal cord. This study analyzed the effects of substance P on calcium currents activated in voltage clamp. We examined the calcium-dependent sAHP in current clamp, to determine the involvement of three calcium channel subtypes modulated by substance P. The effects of substance P on membrane potential and during N-methyl-d-aspartic acid (NMDA) induced oscillations were also analyzed. Depolarizing voltage steps induced inward calcium currents. Substance P reduced the currents carried by calcium by 61% in commissural interneurons and by 31% in motoneurons. Using specific calcium channel antagonists, we show that substance P reduces the sAHP primarily by inhibiting N-type (CaV2.2) channels. Substance P depolarized both motoneurons and commissural interneurons, and we present evidence that this occurs due to an increased input resistance. We also explored the effects of substance P on NMDA-induced oscillations in tetrodotoxin and found it caused a frequency increase. Thus the reduction of calcium entry by substance P and the accompanying decrease of the sAHP amplitude, combined with substance P potentiation of currents activated by NMDA, may both contribute to the increase in fictive locomotion frequency.


2017 ◽  
Vol 117 (1) ◽  
pp. 215-229 ◽  
Author(s):  
Katelyn N. Benthall ◽  
Ryan A. Hough ◽  
Andrew D. McClellan

Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results. Thus, after disruption of long-axon projections from RS neurons in the lamprey, descending propriospinal (PS) neurons appear to be a viable compensatory mechanism for indirect activation of spinal locomotor networks.


2005 ◽  
Vol 22 (1) ◽  
pp. 55-63 ◽  
Author(s):  
SHIH-FANG FAN ◽  
STEPHEN YAZULLA

Cannabinoid CB1receptor (viaGs) and dopamine D2receptor (viaGi/o) antagonistically modulate goldfish cone membrane currents. As ON bipolar cells have CB1and D1receptors, but not D2receptors, we focused on whether CB1receptor agonist and dopamine interact to modulate voltage-dependent outward membrane K+currentsIK(V)of the ON mixed rod/cone (Mb) bipolar cells. Whole-cell currents were recorded from Mb bipolar cells in goldfish retinal slices. Mb bipolar cells were identified by intracellular filling with Lucifer yellow. The bath solution was calcium-free and contained 1 mM cobalt to block indirect calcium-dependent effects. Dopamine (10 μM) consistently increasedIK(V)by a factor of 1.57 ± 0.12 (S.E.M.,n= 15). A CB receptor agonist, WIN 55212-2 (0.25–1 μM), had no effect, but 4 μM WIN 55212-2 suppressedIK(V)by 60%. IfIK(V)was first increased by 10 μM dopamine, application of WIN 55212-2 (0.25–1 μM) reversibly blocked the effect of dopamine even though these concentrations of WIN 55212-2 had no effect of their own. If WIN 55212-2 was applied first and dopamine (10 μM) was added to the WIN-containing solution, 0.1 μM WIN 55212-2 blocked the effect of dopamine. All effects of WIN 55212-2 were blocked by coapplication of SR 141716A (CB1antagonist) and pretreatment with pertussis toxin (blocker of Gi/o) indicating actionviaCB1receptor activation of G protein Gi/o. Coactivation of CB1and D1receptors on Mb bipolar cells produces reciprocal effects onIK(V). The CB1-evoked suppression ofIK(V)is mediated by G protein Gi/o, whereas the D1-evoked enhancement is mediated by G protein Gs. As dopamine is a retinal “light” signal, these data support our notion that endocannabinoids function as a “dark” signal, interacting with dopamine to set retinal sensitivity.


2018 ◽  
Vol 120 (3) ◽  
pp. 998-1009 ◽  
Author(s):  
David Acton ◽  
Matthew J. Broadhead ◽  
Gareth B. Miles

Astrocytes modulate many neuronal networks, including spinal networks responsible for the generation of locomotor behavior. Astrocytic modulation of spinal motor circuits involves release of ATP from astrocytes, hydrolysis of ATP to adenosine, and subsequent activation of neuronal A1 adenosine receptors (A1Rs). The net effect of this pathway is a reduction in the frequency of locomotor-related activity. Recently, it was proposed that A1Rs modulate burst frequency by blocking the D1-like dopamine receptor (D1LR) signaling pathway; however, adenosine also modulates ventral horn circuits by dopamine-independent pathways. Here, we demonstrate that adenosine produced upon astrocytic stimulation modulates locomotor-related activity by counteracting the excitatory effects of D1LR signaling and does not act by previously described dopamine-independent pathways. In spinal cord preparations from postnatal mice, a D1LR agonist, SKF 38393, increased the frequency of locomotor-related bursting induced by 5-hydroxytryptamine and N-methyl-d-aspartate. Bath-applied adenosine reduced burst frequency only in the presence of SKF 38393, as did adenosine produced after activation of protease-activated receptor-1 to stimulate astrocytes. Furthermore, the A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine enhanced burst frequency only in the presence of SKF 38393, indicating that endogenous adenosine produced by astrocytes during network activity also acts by modulating D1LR signaling. Finally, modulation of bursting by adenosine released upon stimulation of astrocytes was blocked by protein kinase inhibitor-(14–22) amide, a protein kinase A (PKA) inhibitor, consistent with A1R-mediated antagonism of the D1LR/adenylyl cyclase/PKA pathway. Together, these findings support a novel, astrocytic mechanism of metamodulation within the mammalian spinal cord, highlighting the complexity of the molecular interactions that specify motor output. NEW & NOTEWORTHY Astrocytes within the spinal cord produce adenosine during ongoing locomotor-related activity or when experimentally stimulated. Here, we show that adenosine derived from astrocytes acts at A1 receptors to inhibit a pathway by which D1-like receptors enhance the frequency of locomotor-related bursting. These data support a novel form of metamodulation within the mammalian spinal cord, enhancing our understanding of neuron-astrocyte interactions and their importance in shaping network activity.


2021 ◽  
Vol 13 (586) ◽  
pp. eabb4422
Author(s):  
Marco Bonizzato ◽  
Marina Martinez

Most rehabilitation interventions after spinal cord injury (SCI) only target the sublesional spinal networks, peripheral nerves, and muscles. However, mammalian locomotion is not a mere act of rhythmic pattern generation. Recovery of cortical control is essential for voluntary movement and modulation of gait. We developed an intracortical neuroprosthetic intervention to SCI, with the goal to condition cortical locomotor control. Neurostimulation delivered in phase coherence with ongoing locomotion immediately alleviated primary SCI deficits, such as leg dragging, in rats with incomplete SCI. Cortical neurostimulation achieved high fidelity and markedly proportional online control of leg trajectories in both healthy and SCI rats. Long-term neuroprosthetic training lastingly improved cortical control of locomotion, whereas short training held transient improvements. We performed longitudinal awake cortical motor mapping, unveiling that recovery of cortico-spinal transmission tightly parallels return of locomotor function in rats. These results advocate directly targeting the motor cortex in clinical neuroprosthetic approaches.


1996 ◽  
Vol 76 (6) ◽  
pp. 3740-3749 ◽  
Author(s):  
V. Neugebauer ◽  
H. Vanegas ◽  
J. Nebe ◽  
P. Rumenapp ◽  
H. G. Schaible

1. The present study addresses the involvement of voltage-dependent calcium channels of the N and L type in the spinal processing of innocuous and noxious input from the knee joint, both under normal conditions and under inflammatory conditions in which spinal cord neurons become hyperexcitable. In 30 anesthetized rats, extracellular recordings were performed from single dorsal horn neurons in segments 1–4 of the lumbar spinal cord. All neurons had receptive fields in the ipsilateral knee joint. In 22 rats, an inflammation was induced in the ipsilateral knee joint by kaolin and carrageenan 4–16 h before the recordings. The antagonist at N-type calcium channels, omega-conotoxin GVIA (omega-CTx GVIA), was administered topically in solution to the dorsal surface of the spinal cord at the appropriate spinal segments in 6 rats with normal joints and in 12 rats with inflamed knee joints. The antagonist at L-type channels, nimodipine, was administered topically in 5 rats with normal joints and in 11 rats with inflamed knee joints. In another five rats with inflamed joints, antagonists at L-type calcium channels (diltiazem and nimodipine) and omega-CTx GVIA were administered ionophoretically with multibarrel electrodes close to the neurons recorded. 2. The topical administration of omega-CTx GVIA to the spinal cord reduced the responses to both innocuous and noxious pressure applied to the knee joint in a sample of 11 neurons with input from the normal joint and in a sample of 16 neurons with input from the inflamed joint (hyperexcitable neurons). The responses were decreased to approximately 65% of the predrug values within administration times of 30 min. A similar reduction of the responses to innocuous and noxious pressure was observed when omega-CTx GVIA was administered ionophoretically to nine hyperexcitable neurons. In neurons with input from the normal or the inflamed knee joint, the administration of omega-CTx GVIA led also to a reduction of the responses to innocuous and noxious pressure applied to the noninflamed ankle joint. 3. The topical administration of nimodipine decreased the responses to innocuous and noxious pressure applied to the knee in a sample of 9 neurons with input from the normal joint and in a sample of 16 neurons with input from the inflamed knee joint (hyperexcitable neurons). Within administration times of 30 min, the responses were reduced to approximately 70% of the predrug values. In hyperexcitable neurons, the responses to innocuous and noxious pressure applied to the knee were also decreased during ionophoretic administration of nimodipine (6 neurons) and diltiazem (9 neurons). When the noninflamed ankle was stimulated, the responses to innocuous pressure were reduced neither in neurons with input from the normal knee nor in neurons with input from the inflamed knee, but the responses of hyperexcitable neurons to noxious pressure onto the ankle were reduced. The ionophoretic administration of the agonist at the L-type calcium channel, S(-)-Bay K 8644, enhanced the responses to mechanical stimulation of the knee joint in all 14 hyperexcitable neurons tested. The effect of S(-)-Bay K 8644 was counteracted by both diltiazem (in 6 of 6 neurons) and nimodipine (in 5 of 5 neurons). 4. These data show that antagonists at both the N- and the L-type voltage-dependent calcium channels influence the spinal processing of input from the knee joint. The data suggest, therefore, that voltage-dependent calcium calcium channels of both the N and the L type are important for the sensory functions of the spinal cord. They are involved in the spinal processing of nonnociceptive as well as nociceptive mechanosensory input from the joint, both under normal and inflammatory conditions. The present results show in particular that N- and L-type channels are likely to be involved in the generation of pain evoked by noxious mechanical stimulation in normal tissue as well as in the mechanical hyperalgesia that is usually pres


2013 ◽  
Vol 109 (8) ◽  
pp. 2118-2128 ◽  
Author(s):  
Patrick M. Sonner ◽  
David R. Ladle

Sensory feedback is critical for normal locomotion and adaptation to external perturbations during movement. Feedback provided by group Ia afferents influences motor output both directly through monosynaptic connections and indirectly through spinal interneuronal circuits. For example, the circuit responsible for reciprocal inhibition, which acts to prevent co-contraction of antagonist flexor and extensor muscles, is driven by Ia afferent feedback. Additionally, circuits mediating presynaptic inhibition can limit Ia afferent synaptic transmission onto central neuronal targets in a task-specific manner. These circuits can also be activated by stimulation of proprioceptive afferents. Rodent locomotion rapidly matures during postnatal development; therefore, we assayed the functional status of reciprocal and presynaptic inhibitory circuits of mice at birth and compared responses with observations made after 1 wk of postnatal development. Using extracellular physiological techniques from isolated and hemisected spinal cord preparations, we demonstrate that Ia afferent-evoked reciprocal inhibition is as effective at blocking antagonist motor neuron activation at birth as at 1 wk postnatally. In contrast, at birth conditioning stimulation of muscle nerve afferents failed to evoke presynaptic inhibition sufficient to block functional transmission at synapses between Ia afferents and motor neurons, even though dorsal root potentials could be evoked by stimulating the neighboring dorsal root. Presynaptic inhibition at this synapse was readily observed, however, at the end of the first postnatal week. These results indicate Ia afferent feedback from the periphery to central spinal circuits is only weakly gated at birth, which may provide enhanced sensitivity to peripheral feedback during early postnatal experiences.


Sign in / Sign up

Export Citation Format

Share Document