scholarly journals Preparation of Anticipatory Postural Adjustments Prior to Stepping

2007 ◽  
Vol 97 (6) ◽  
pp. 4368-4379 ◽  
Author(s):  
Colum D. MacKinnon ◽  
Dennis Bissig ◽  
Julie Chiusano ◽  
Emily Miller ◽  
Laura Rudnick ◽  
...  

Step initiation involves anticipatory postural adjustments (APAs) that propel the body mass forward and laterally before the first step. This study used a startle-like acoustic stimulus (SAS) and transcranial magnetic stimulation (TMS) to examine the preparation of APAs before forward stepping. After an instructed delay period, subjects initiated forward steps in reaction to a visual “go” cue. TMS or SAS was delivered before (−1,400 or −100 ms), on (0 ms), or after (+100 ms for TMS, +200 ms for SAS) the imperative “go” cue. Ground reaction forces and electromyographic activity were recorded. In control trials, the mean reaction time was 217 ± 38 ms. In contrast, the SAS evoked APAs that had an average onset of 110 ± 54 ms, whereas the incidence, magnitude, and duration of the APA increased as the stimulus timing approached the “go” cue. A facilitation of motor-evoked potentials in the initial agonist muscle was observed only when TMS was applied at +100 ms. These findings indicate that there was an initial phase of movement preparation during which the APA-stepping sequence was progressively assembled, and that this early preparation did not involve the corticomotor pathways activated by TMS. The subsequent increase in corticomotor excitability between the imperative stimulus and onset of the APA suggests that corticospinal pathways contribute to the voluntary initiation of the prepared APA-stepping sequence. These findings are consistent with a feedforward mode of neural control whereby the motor sequence, including the associated postural adjustments, is prepared before voluntary movement.

1994 ◽  
Vol 72 (6) ◽  
pp. 2892-2902 ◽  
Author(s):  
A. L. Burleigh ◽  
F. B. Horak ◽  
F. Malouin

1. In this study, the interaction between anticipatory postural adjustments for step initiation and automatic postural responses to an external perturbation were investigated by having subjects initiate a voluntary forward step while perturbed by a backward surface translation, which caused forward sway of the body. The postural adjustments for step initiation act to move the body center of mass (COM) forward, whereas the automatic postural responses act to move the COM backward to restore stance equilibrium. Because the postural behaviors are in opposition, we asked whether a temporal hierarchy exists in which automatic postural responses are executed to restore equilibrium and followed by stereotypic postural adjustments for step initiation, or whether the interaction between these two postural behaviors is more dynamic. 2. Lower extremity electromyographs (EMGs), ground reaction forces, and kinematics were recorded from 10 subjects during three conditions: to quantify the anticipatory postural adjustments for step initiation, subjects stepped forward as soon as they felt a proprioceptive cue; to quantify the automatic postural responses to perturbation, subjects maintained stance equilibrium in response to a backward surface translation under both feet; and to quantify the interaction between the postural adjustments for the voluntary step and the automatic responses to the perturbation, subjects were exposed to a backward surface translation and instructed to step forward as soon as they felt the platform begin to move. 3. The anticipatory adjustments for step initiation included tibialis activation [stance limb = 163 +/- 28 (SE) ms; swing limb = 173 +/- 33 ms] and soleus inhibition resulting in center of foot pressure (COP) moving backward and lateral toward the swing limb to propel the COM forward over the stance limb. Subsequently, activation of the swing limb gastrocnemius resulted in heel-off. In contrast, the automatic postural adjustments for maintenance of stance equilibrium during a backward surface translation included activation of soleus and gastrocnemius (104 +/- 23 ms and 115 +/- 14 ms, respectively) resulting in a symmetrical forward displacement of the COP that moved the COM back to its original position with respect to the feet. 4. When a forward step was initiated in response to the translation, the automatic postural responses were reduced in amplitude bilaterally in soleus and in the stance limb gastrocnemius. When present the postural response occurred at the same latency when the goal was to initiate a step as when the goal was to maintain standing.(ABSTRACT TRUNCATED AT 400 WORDS)


2013 ◽  
Vol 37 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Grzegorz Juras ◽  
Kajetan Słomka

The aim of this study was to explore the effects of accuracy constraints on the characteristics of anticipatory postural adjustments (APA) in a task that involves a movement consisting of a controlled phase and a ballistic phase. It was hypothesized that APA scaling with task parameters (target size) would be preserved even when the task is performed by muscles that have no direct effects on APA. Sixteen healthy right handed subjects participated in the study. All participants had no prior experience in dart throwing. Subjects’ average age was 24.1 ± 1.9 years. A force platform and a motion capture system were used to register kinetics of the body and kinematics of the throwing arm and throwing accuracy. The experiment consisted of six series of twenty consecutive dart throws to a specified target. Target sizes (T2-T6) were set at 25%, 50%, 75%, 125% and 150% of target 1 (T1) initially set as the spread of the last 20 throws in a 50 throw training session. This allowed to distinguish six indexes of difficulty (ID’s) ranging from 2,9 to 5,9. A one-way ANOVA for repeated measures was used for statistical analysis. Results of ANOVA showed a significant effect of target size at Constant Error but no effect at APA time. There were also no significant differences between hit and miss throws. From a control perspective, it can be stated that changes in central commands did not lead to changes in APA time in the analyzed motor task.


1996 ◽  
Vol 75 (4) ◽  
pp. 1619-1628 ◽  
Author(s):  
A. Burleigh ◽  
F. Horak

1. Our previous study showed that two distinct postural modifications occurred when subjects were instructed to step, rather than maintain stance, in response to a backward surface translation: 1) the automatic postural responses to the surfaces perturbation were reduced in magnitude and 2) the anticipatory postural adjustments promoting foot-off were shortened in duration. This study investigates the extent to which task instruction, prediction of perturbation velocity, and afferent sensory information related to perturbation velocity are responsible for these postural modification. 2. Eleven human subjects were instructed in advance, to either maintain stance or step forward in response to a backward surface translation. Four different velocities of translation were used to perturb equilibrium. To assess the influence of predicted versus actual velocity information, the surface translations were presented in both a blocked order of increasing perturbation velocity (predictable) and a random order (unpredictable). Lower-extremity electromyographs (EMGs), ground reaction forces, and movement kinematics were quantified for both the automatic postural responses to perturbation and the anticipatory postural adjustments for step initiation. 3. The instruction to step was not solely responsible for the suppression of the automatic postural response. Prediction of perturbation velocity was required for significant suppression of the early automatic postural response when subjects stepped in response to the perturbation. When compared with the stance condition, the magnitude of the initial 50 ms of the automatic response in bilateral soleus and the left limb gastrocnemius (initial stance limb) was significantly reduced only when the perturbation velocities were presented in a blocked order. The magnitude of the automatic response was not reduced in the gastrocnemius of the right limb, which was always the initial swing limb and recruited for heel-off in the step conditions. This asymmetrical reduction of the gastrocnemius suggests that modification of the response was specific to the instruction, rather than a general decrease in the extensor muscle excitability. 4. The suppression of the early automatic postural response involved a change in the bias of the response. Despite the reduced magnitude during the predictable velocity step condition, the slope (i.e., gain) of the response with increasing velocities was not different from that of the stance condition. Thus the excitability of the automatic response was reduced by a relatively constant amount for each velocity when the perturbation velocity was predictable. 5. In contrast to the importance of velocity prediction for modification of the automatic postural response, actual velocity information was used for modification of the anticipatory postural adjustments when step was initiated in response to the surface perturbation. Regardless of whether the perturbation velocities were presented in a blocked or random order, the anticipatory postural adjustments were rapidly initiated and the duration of the postural adjustments for step initiation was shortened as the velocity of perturbation increased. 6. We conclude that the CNS uses prediction of perturbation velocity to modify the excitability of early automatic postural responses when the postural goal changes. In contrast, actual afferent velocity information can be used to modify the duration of the anticipatory postural adjustments for a voluntary step in response to perturbation. Thus the CNS utilizes feed-forward prediction to modify peripherally triggered postural responses, and utilizes immediate afferent information to modify the centrally initiated postural adjustments associated with voluntary movement.


2019 ◽  
Vol 122 (6) ◽  
pp. 2541-2547 ◽  
Author(s):  
Victoria Smith ◽  
Dana Maslovat ◽  
Anthony N. Carlsen

The “StartReact” effect refers to the rapid involuntary triggering of a prepared movement in response to a loud startling acoustic stimulus (SAS). This effect is typically confirmed by the presence of short-latency electromyographic activity in startle reflex-related muscles such as the sternocleidomastoid (SCM); however, there is debate regarding the specific neural pathways involved in the StartReact effect. Some research has implicated a subcortically mediated pathway, which would predict different response latencies depending on the presence of a startle reflex. Alternatively, other research has suggested that this effect involves the same pathways responsible for voluntary response initiation and simply reflects higher preparatory activation levels, and thus faster voluntary initiation. To distinguish between these competing hypotheses, the present study assessed preparation level during a simple reaction time (RT) task involving wrist extension in response to a control tone or a SAS. Premotor RT and startle circuitry engagement (as measured by SCM activation) were determined for each trial. Additionally, preparation level at the go signal on each trial was measured using motor-evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS). Results showed that SAS trial RTs were significantly shorter ( P = 0.009) in the presence of startle-related SCM activity. Nevertheless, preparation levels (as indexed by MEP amplitude) were statistically equivalent between trials with and without SCM activation. These results indicate that the StartReact effect relates to engagement of the startle reflex circuitry rather than simply being a result of an increased level of preparatory activation. NEW & NOTEWORTHY The neural mechanism underlying the early triggering of goal-directed actions by a startling acoustic stimulus (SAS) is unclear. We show that although significant reaction time differences were evident depending on whether the SAS elicited a startle reflex, motor preparatory activation was the same. Thus, in a highly prepared state, the short-latency responses associated with the StartReact effect appear to be related to engagement of startle reflex circuitry, not differences in motor preparatory level.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4309 ◽  
Author(s):  
Bianca Callegari ◽  
Ghislain Saunier ◽  
Manuela Brito Duarte ◽  
Gizele Cristina da Silva Almeida ◽  
Cesar Ferreira Amorim ◽  
...  

Beyond the classical paradigm that presents the Anticipatory Postural Adjustments (APAs) as a manner to create forces that counteract disturbances arising from the moving segment during a pointing task, there is a controversial discussion about the role APAs to facilitate the movement and perform a task accurately. In addition, arm kinematics features are classically used to infer the content of motor planning for the execution and the control of arm movements. The present study aimed to disentangle the conflicting role of APAs during an arm-pointing task in which the subjects reach a central diode that suddenly turns on, while their postural stability was manipulated. Three postures were applied: Standing (Up), Sit without feet support (SitUnsup) and Sit with feet support (SitSup). We found that challenging postural stability induced an increase of the reaction time and movement duration (observed for the SitUnsup compared to SitSUp and Up) as well as modified the upper-limb velocity profile. Indeed, a greater max velocity and a shorter deceleration time were observed under the highest stability (SitSup). Thus, these Kinematics features reflect less challenging task and simple motor plan when the body is stabilized. Concerning the APAs, we observed the presence of them independently of the postural stability. Such a result strongly suggests that APAs act to facilitate the limb movement and to counteract perturbation forces. In conclusion, the degree of stability seems particularly tuned to the motor planning of the upper-limb during a pointing task whereas the postural chain (sitting vs. standing) was also determinant for APAs.


2009 ◽  
Vol 101 (4) ◽  
pp. 2120-2133 ◽  
Author(s):  
Julia A. Leonard ◽  
Ryan H. Brown ◽  
Paul J. Stapley

We examined the spatial organization of feedforward postural adjustments produced prior to and during voluntary arm reaching movements executed while standing. We sought to investigate whether the activity of postural muscles before and during reaching was directionally tuned and whether a strategy of horizontal force constraint could be observed. To this end, eight human subjects executed self-paced reach-to-point movements on the random illumination of one of 13 light targets placed within a 180° array centered along the midline of the body. Analysis was divided into two periods: a first corresponding to the 250 ms preceding the onset of the reaching movements (termed pPA period) and a second 250-ms period immediately preceding target attainment (the aPA period). For both periods, electromyographic activity of the lower limb muscles revealed a clear directional tuning, with groups of muscles being activated for similar directions of reach. Analysis of horizontal ground reaction forces supported the existence of a force constraint strategy only for the pPA period, however, with those in the aPA period being more widely dispersed. We suggest that the strategy adopted for feedforward pPAs is one where the tuned muscle synergies constrain the forces diagonally away from the center of mass (CoM) to move it within the support base. However, the need to control for final finger and body position for each target during the aPA phase resulted in a distribution of vectors across reaching directions. Overall, our results would support the idea that endpoint limb force during postural tasks depends on the use of functional muscle synergies, which are used to displace the CoM or decelerate the body at the end of the reach.


2021 ◽  
Vol 15 ◽  
Author(s):  
Veronica Farinelli ◽  
Francesco Bolzoni ◽  
Silvia Maria Marchese ◽  
Roberto Esposti ◽  
Paolo Cavallari

Anticipatory postural adjustments (APAs) are the coordinated muscular activities that precede the voluntary movements to counteract the associated postural perturbations. Many studies about gait initiation call APAs those activities that precede the heel-off of the leading foot, thus taking heel-off as the onset of voluntary movement. In particular, leg muscles drive the center of pressure (CoP) both laterally, to shift the body weight over the trailing foot and backward, to create a disequilibrium torque pushing forward the center of mass (CoM). However, since subjects want to propel their body rather than lift their foot, the onset of gait should be the CoM displacement, which starts with the backward CoP shift. If so, the leg muscles driving such a shift are the prime movers. Moreover, since the disequilibrium torque is mechanically equivalent to a forward force acting at the pelvis level, APAs should be required to link the body segments to the pelvis: distributing such concentrated force throughout the body would make all segments move homogeneously. In the aim of testing this hypothesis, we analyzed gait initiation in 15 right-footed healthy subjects, searching for activities in trunk muscles that precede the onset of the backward CoP shift. Subjects stood on a force plate for about 10 s and then started walking at their natural speed. A minimum of 10 trials were collected. A force plate measured the CoP position while wireless probes recorded the electromyographic activities. Recordings ascertained that at gait onset APAs develop in trunk muscles. On the right side, Rectus Abdominis and Obliquus Abdominis were activated in 11 and 13 subjects, respectively, starting on average 33 and 54 ms before the CoP shift; Erector Spinae (ES) at L2 and T3 levels was instead inhibited (9 and 7 subjects, 104 and 120 ms). On the contralateral side, the same muscles showed excitatory APAs (abdominals in 11 and 12 subjects, 27 and 82 ms; ES in 10 and 7 subjects, 75 and 32 ms). The results of this study provide a novel framework for distinguishing postural from voluntary actions, which may be relevant for the diagnosis and rehabilitation of gait disorders.


Sign in / Sign up

Export Citation Format

Share Document