scholarly journals Characterizing the conductance underlying depolarization-induced slow current in cerebellar Purkinje cells

2013 ◽  
Vol 109 (4) ◽  
pp. 1174-1181 ◽  
Author(s):  
Yu Shin Kim ◽  
Eunchai Kang ◽  
Yuichi Makino ◽  
Sungjin Park ◽  
Jung Hoon Shin ◽  
...  

Brief strong depolarization of cerebellar Purkinje cells produces a slow inward cation current [depolarization-induced slow current (DISC)]. Previous work has shown that DISC is triggered by voltage-sensitive Ca influx in the Purkinje cell and is attenuated by blockers of vesicular loading and fusion. Here, we have sought to characterize the ion channel(s) underlying the DISC conductance. While the brief depolarizing steps that triggered DISC were associated with a large Ca transient, the onset of DISC current corresponded only with the Ca transient decay phase. Furthermore, substitution of external Na with the impermeant cation N-methyl-d-glucamine produced a complete and reversible block of DISC, suggesting that the DISC conductance was not Ca permeant. Transient receptor potential cation channel, subfamily M, members 4 (TRPM4) and 5 (TRPM5) are nonselective cation channels that are opened by Ca transients but do not flux Ca. They are expressed in Purkinje cells of the posterior cerebellum, where DISC is large, and, in these cells, DISC is strongly attenuated by nonselective blockers of TRPM4/5. However, measurement of DISC currents in Purkinje cells derived from TRPM4 null, TRPM5 null, and double null mice as well as wild-type mice with TRPM4 short hairpin RNA knockdown showed a partial attenuation with 35–46% of current remaining. Thus, while the DISC conductance is Ca triggered, Na permeant, and Ca impermeant, suggesting a role for TRPM4 and TRPM5, these ion channels are not absolutely required for DISC.

2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


Author(s):  
Mateus F. Rossato ◽  
Carin Hoffmeister ◽  
Gabriela Trevisan ◽  
Fabio Bezerra ◽  
Thiago M. Cunha ◽  
...  

AbstractObjectiveThe present study aimed to elucidate the mechanisms involved in MSU-induced IL-1β release in a rodent animal model of acute gout arthritis.MethodsPainful (mechanical and thermal hypersensitivity, ongoing pain and arthritis score) and inflammatory (oedema, plasma extravasation, cell infiltration and IL-1β release) parameters were assessed several hours after intra-articular injection of MSU (100 µg/articulation) in wild-type or knockout mice for Toll-like receptor 4 (TLR4), inducible nitric oxide synthase (iNOS), transient receptor potential (TRP) V1 and the IL-1 receptor (IL-1R). Also, wild-type animals were treated with clodronate, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) (TLR4 antagonist), spleen tyrosine kinase (SYK) inhibitor (iSYK), aminoguanidine (AMG, an iNOS inhibitor) or SB366791 (TRPV1 antagonist). Nitrite/nitrate and IL-1β levels were measured on the synovial fluid of wild-type mice, 2 h after intra-articular MSU injections, or medium from macrophages stimulated for MSU (1000 μg) for 2 h.ResultsIntra-articular MSU injection caused robust nociception and severe inflammation from 2 up to 6 h after injection, which were prevented by the pre-treatment with clodronate, LPS-RS, iSYK, AMG and SB366791, or the genetic ablation of TLR4, iNOS, TRPV1 or IL-1R. MSU also increased nitrite/nitrate and IL-1β levels in the synovial fluid, which was prevented by clodronate, LPS-RS, iSYK and AMG, but not by SB366791. Similarly, MSU-stimulated peritoneal macrophages released nitric oxide, which was prevented by LPS-RS, iSYK and AMG, but not by SB366791, and released IL-1β, which was prevented by LPS-RS, iSYK, AMG and SB366791.ConclusionOur data indicate that MSU may activate TLR4, SYK, iNOS and TRPV1 to induce the release of IL-1β by macrophages, triggering nociception and inflammation during acute gout attack.


2012 ◽  
Vol 24 (1) ◽  
pp. 186
Author(s):  
T. H. Koo ◽  
E. B. Jeung

During pregnancy, the placenta represents the establishment of an intimate connection between mother and fetus that is specific to mammals. Calbindins [Calbindin-D9k (CaBP-9k) and -D28k (CaBP-28k)] are proteins possessing EF-hand motifs that have a high affinity for Ca2+ ions and play an important role in the regulation and buffering of Ca2+ in the various tissues. Many types of calcium channels, intracellular calcium binding proteins, Na+/Ca2+ exchangers (NCX) and transient receptor potential cation channels (TRPV) have been found in the placenta. In this study, the calcium channel in maternal-fetal Ca2+ transport was investigated using the phenotypes of wild-type, CaBP-9k, CaBP-28k and CaBP-9k/28k knockout (KO) mouse models. Expressions of calcium transport genes in 3 dissected sections of placenta (MP: maternal, CP: central, FP: fetal) were examined by real-time RT-PCR (RT-qPCR) and Western blot analysis at gestational Day 19 in these mice. The level of TRPV6 mRNA and protein was highest in the MP and CP of CaBP-28k KO mice and the FP of CaBP-9k KO mice compared with other sections of KO mice. The level of CaBP-9k was significantly induced in CaBP-28k KO mice in MP, CP and FP compared with in WT mice, which levels were elevated from maternal to fetal sections. The expression of CaBP-28k mRNA and protein was reduced in CaBP-9k KO mice compared with WT in the 3 sections of placenta. The expression of NCX1 mRNA and protein was higher in all KO mice than in WT in MP and NCX1 was highest in CaBP-28k KO mice in CP, but strong in CaBP-9k KO mice in FP compared with other strains. These results indicate that TRPV6 and NCX1 participate in transferring calcium ions between maternal and fetal compartments and alteration of CaBP-9k/28k is involved in the intracellular Ca2+ buffering system among WT and KO mice. These results taken together indicate that TRPV6 and CaBP-9k genes may play a role as a key element in controlling placental calcium transport during pregnancy.


2020 ◽  
Vol 100 (2) ◽  
pp. 725-803 ◽  
Author(s):  
Karel Talavera ◽  
Justyna B. Startek ◽  
Julio Alvarez-Collazo ◽  
Brett Boonen ◽  
Yeranddy A. Alpizar ◽  
...  

The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Utchariya Anantamongkol ◽  
Mei Ao ◽  
Jayashree Sarathy nee Venkatasubramanian ◽  
Y. Sangeeta Devi ◽  
Nateetip Krishnamra ◽  
...  

Mammary gland ion transport is essential for lactation and is regulated by prolactin and glucocorticoids. This study delineates the roles of prolactin receptors (PRLR) and long-term prolactin and dexamethasone (P-D)-mediation of [Ca2+]i and Cl− transport in HC-11 cells. P-D (24 h) suppressed ATP-induced [Ca2+]i. This may be due to decreased Ca2+ entry since P-D decreased transient receptor potential channel 3 (TRPC3) but not secretory pathway Ca2+-ATPase 2 (SPCA2) mRNA. ATP increased Cl− transport, measured by iodide (I−) efflux, in control and P-D-treated cells. P-D enhanced I− efflux response to cAMP secretagogues without altering Cl− channels or NKCC cotransporter expression. HC-11 cells contain only the long form of PRLR (PRLR-L). Since the short isoform, PRLR-S, is mammopoietic, we determined if transfecting PRLR-S (rs) altered PRLR-L-mediated Ca2+ and Cl− transport. Untreated rs cells showed an attenuated [Ca2+]i response to ATP with no further response to P-D, in contrast to vector-transfected (vtc) controls. P-D inhibited TRPC3 in rs and vtc cells but increased SPCA2 only in rs cells. As in wild-type, cAMP-stimulated Cl− transport, in P-D-treated vtc and rs cells. In summary, 24 h P-D acts via PRLR-L to attenuate ATP-induced [Ca2+]i and increase cAMP-activated Cl− transport. PRLR-S fine-tunes these responses underscoring its mammopoietic action.


2006 ◽  
Vol 290 (5) ◽  
pp. F1103-F1109 ◽  
Author(s):  
Hongshi Xu ◽  
Yi Fu ◽  
Wei Tian ◽  
David M. Cohen

We identified a consensus N-linked glycosylation motif within the pore-forming loop between the fifth and sixth transmembrane segments of the osmoresponsive transient receptor potential (TRP) channel TRPV4. Mutation of this residue from Asn to Gln (i.e., TRPV4N651Q) resulted in loss of a slower migrating band on anti-TRPV4 immunoblots and a marked reduction in lectin-precipitable TRPV4 immunoreactivity. HEK293 cells transiently transfected with the mutant TRPV4N651Q exhibited increased calcium entry in response to hypotonic stress relative to wild-type TRPV4 transfectants. This increase in hypotonicity responsiveness was associated with an increase in plasma membrane targeting of TRPV4N651Q relative to wild-type TRPV4 in both HEK293 and COS-7 cells but had no effect on overall channel abundance in whole cell lysates. Residue N651 of TRPV4 is immediately adjacent to the pore-forming loop. Although glycosylation in this vicinity has not been reported for a TRP channel, the structurally related hexahelical hyperpolarization-activated cyclic nucleotide-gated channel, HCN2, and the voltage-gated potassium channel, human ether-a-go-go-related (HERG), share a nearly identically situated and experimentally confirmed N-linked glycosylation site which promotes rather than limits channel insertion into the plasma membrane. These data point to a potentially conserved structural and functional feature influencing membrane trafficking across diverse members of the voltage-gated-like ion channel superfamily.


2020 ◽  
Author(s):  
Felix Kurth ◽  
Yee Kit Tai ◽  
Dinesh Parate ◽  
Marc van Oostrum ◽  
Yannick R. F. Schmid ◽  
...  

AbstractPulsed electromagnetic fields (PEMFs) are capable of specifically activating a TRPC1-mitochondrial axis underlying cell expansion and mitohormetic survival adaptations. This study characterizes cell-derived vesicles (CDVs) generated from C2C12 murine myoblasts and shows that they are equipped with the sufficient molecular machinery to confer mitochondrial respiratory capacity and associated proliferative responses upon their fusion with recipient cells. CDVs derived from wild type C2C12 myoblasts include the cation-permeable transient receptor potential (TRP) channels, TRPC1 and TRPA1, and directly respond to PEMF exposure with TRPC1-mediated calcium entry. By contrast, CDVs derived from C2C12 muscle cells in which TRPC1 had been genetically knocked-down using CRISPR/Cas9 genome editing, do not. Wild type C2C12-derived CDVs are also capable of restoring PEMF-induced proliferative and mitochondrial activation in two C2C12-derived TRPC1 knockdown clonal cell lines in accordance to their endogenous degree of TRPC1 suppression. C2C12 wild type CDVs respond to menthol with calcium entry and accumulation, likewise verifying TRPA1 functional gating and further corroborating compartmental integrity. Proteomic and lipidomic analyses confirm the surface membrane origin of the CDVs providing an initial indication of the minimal cellular machinery required to recover mitochondrial function. CDVs hence possess the potential of restoring respiratory and proliferative capacities to senescent cells and tissues.


2018 ◽  
Author(s):  
Bin Wu ◽  
Francois G.C. Blot ◽  
Aaron B. Wong ◽  
Catarina Osório ◽  
Youri Adolfs ◽  
...  

AbstractDespite the canonical homogenous character of its organization, the cerebellum plays differential computational roles in distinct types of sensorimotor behaviors. However, the molecular and cell physiological underpinnings are unclear. Here we determined the contribution of transient receptor potential cation channel type C3 (TRPC3) to signal processing in different cerebellar modules. Using gain-of-function and loss-of-function mouse models, we found that TRPC3 controls the simple spike activity of zebrin-negative (Z–), but not of zebrin-positive (Z+), Purkinje cells. Moreover, in vivo TRPC3 also regulated complex spike firing and its interaction with simple spikes exclusively in Z– Purkinje cells. Finally, we found that eyeblink conditioning, related to Z– modules, but not compensatory eye movement adaptation, linked to Z+ modules, was affected in TRPC3 loss-of-function mice. Together, our results indicate that TRPC3 is essential for the cellular heterogeneity that introduces distinct physiological properties in an otherwise homogeneous population of Purkinje cells, conjuring functional heterogeneity in cerebellar sensorimotor integration.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 547 ◽  
Author(s):  
Jizheng Guo ◽  
Jie Li ◽  
Lin Xia ◽  
Yang Wang ◽  
Jinhang Zhu ◽  
...  

Phospholipid scramblase 1 (PLSCR1), a lipid-binding and Ca2+-sensitive protein located on plasma membranes, is critically involved in phosphatidylserine (PS) externalization, an important process in cell apoptosis. Transient receptor potential canonical 5 (TRPC5), is a nonselective Ca2+ channel in neurons that interacts with many downstream molecules, participating in diverse physiological functions including temperature or mechanical sensation. The interaction between TRPC5 and PLSCR1 has never been reported. Here, we showed that PLSCR1 interacts with TRPC5 through their C-termini in HEK293 cells and mouse cortical neurons. Formation of TRPC5-PLSCR1 complex stimulates PS externalization and promotes cell apoptosis in HEK293 cells and mouse cerebral neurons. Furthermore, in vivo studies showed that PS externalization in cortical neurons induced by artificial cerebral ischemia-reperfusion was reduced in TRPC5 knockout mice compared to wild-type mice, and that the percentage of apoptotic neurons was also lower in TRPC5 knockout mice than in wild-type mice. Collectively, the present study suggested that TRPC5-PLSCR1 is a signaling complex mediating PS externalization and apoptosis in neurons and that TRPC5 plays a pathological role in cerebral-ischemia reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document