scholarly journals Transient Receptor Potential Canonical 5-Scramblase Signaling Complex Mediates Neuronal Phosphatidylserine Externalization and Apoptosis

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 547 ◽  
Author(s):  
Jizheng Guo ◽  
Jie Li ◽  
Lin Xia ◽  
Yang Wang ◽  
Jinhang Zhu ◽  
...  

Phospholipid scramblase 1 (PLSCR1), a lipid-binding and Ca2+-sensitive protein located on plasma membranes, is critically involved in phosphatidylserine (PS) externalization, an important process in cell apoptosis. Transient receptor potential canonical 5 (TRPC5), is a nonselective Ca2+ channel in neurons that interacts with many downstream molecules, participating in diverse physiological functions including temperature or mechanical sensation. The interaction between TRPC5 and PLSCR1 has never been reported. Here, we showed that PLSCR1 interacts with TRPC5 through their C-termini in HEK293 cells and mouse cortical neurons. Formation of TRPC5-PLSCR1 complex stimulates PS externalization and promotes cell apoptosis in HEK293 cells and mouse cerebral neurons. Furthermore, in vivo studies showed that PS externalization in cortical neurons induced by artificial cerebral ischemia-reperfusion was reduced in TRPC5 knockout mice compared to wild-type mice, and that the percentage of apoptotic neurons was also lower in TRPC5 knockout mice than in wild-type mice. Collectively, the present study suggested that TRPC5-PLSCR1 is a signaling complex mediating PS externalization and apoptosis in neurons and that TRPC5 plays a pathological role in cerebral-ischemia reperfusion injury.

2006 ◽  
Vol 290 (5) ◽  
pp. F1103-F1109 ◽  
Author(s):  
Hongshi Xu ◽  
Yi Fu ◽  
Wei Tian ◽  
David M. Cohen

We identified a consensus N-linked glycosylation motif within the pore-forming loop between the fifth and sixth transmembrane segments of the osmoresponsive transient receptor potential (TRP) channel TRPV4. Mutation of this residue from Asn to Gln (i.e., TRPV4N651Q) resulted in loss of a slower migrating band on anti-TRPV4 immunoblots and a marked reduction in lectin-precipitable TRPV4 immunoreactivity. HEK293 cells transiently transfected with the mutant TRPV4N651Q exhibited increased calcium entry in response to hypotonic stress relative to wild-type TRPV4 transfectants. This increase in hypotonicity responsiveness was associated with an increase in plasma membrane targeting of TRPV4N651Q relative to wild-type TRPV4 in both HEK293 and COS-7 cells but had no effect on overall channel abundance in whole cell lysates. Residue N651 of TRPV4 is immediately adjacent to the pore-forming loop. Although glycosylation in this vicinity has not been reported for a TRP channel, the structurally related hexahelical hyperpolarization-activated cyclic nucleotide-gated channel, HCN2, and the voltage-gated potassium channel, human ether-a-go-go-related (HERG), share a nearly identically situated and experimentally confirmed N-linked glycosylation site which promotes rather than limits channel insertion into the plasma membrane. These data point to a potentially conserved structural and functional feature influencing membrane trafficking across diverse members of the voltage-gated-like ion channel superfamily.


2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 231 ◽  
Author(s):  
Dae Hong ◽  
Bo Choi ◽  
A Kho ◽  
Song Lee ◽  
Jeong Jeong ◽  
...  

Over the last two decades, evidence supporting the concept of zinc-induced neuronal death has been introduced, and several intervention strategies have been investigated. Vesicular zinc is released into the synaptic cleft, where it then translocates to the cytoplasm, which leads to the production of reactive oxygen species and neurodegeneration. Carvacrol inhibits transient receptor potential melastatin 7 (TRPM7), which regulates the homeostasis of extracellular metal ions, such as calcium and zinc. In the present study, we test whether carvacrol displays any neuroprotective effects after global cerebral ischemia (GCI), via a blockade of zinc influx. To test our hypothesis, we used eight-week-old male Sprague–Dawley rats, and a GCI model was induced by bilateral common carotid artery occlusion (CCAO), accompanied by blood withdrawal from the femoral artery. Ischemic duration was defined as a seven-minute electroencephalographic (EEG) isoelectric period. Carvacrol (50 mg/kg) was injected into the intraperitoneal space once per day for three days after the onset of GCI. The present study found that administration of carvacrol significantly decreased the number of degenerating neurons, microglial activation, oxidative damage, and zinc translocation after GCI, via downregulation of TRPM7 channels. These findings suggest that carvacrol, a TRPM7 inhibitor, may have therapeutic potential after GCI by reducing intracellular zinc translocation.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Haihong Wang ◽  
Xinyi Zhou ◽  
Hui Li ◽  
Xiaowei Qian ◽  
Yan Wang ◽  
...  

Background. Pyroptosis, a new form of cell death, which has special morphological characteristics, depends on caspase-1 activation and occupies an important role in inflammatory immune diseases and ischemia-reperfusion injury. ROS is a common activator of NLR/caspase-1. Transient receptor potential melastatin 2 (TRPM2), a selective cation channel, is involved in inflammatory regulation. This study was designed to explore the role of TRPM2 in activating caspase-1 and caspase-1-dependent pyroptosis of mouse BMDMs. Methods. BMDMs isolated from WT and TRPM2−/− mice were treated with LPS and ATP, along with ROS inhibitor (NAC and DPI), caspase-1 inhibitor (Z-YVAD), or not. The activation of caspase-1 was measured by western blot. EtBr and EthD-2 staining were used to assess the incidence of pyroptosis. Results. Compared with WT, the activated caspase-1-P10 was higher and the percentage of EtBr positive cells was also increased in TRPM2−/− group, which were both inhibited by Z-YVAD, NAC, or DPI. ASC oligomerization was increased in TRPM2−/− group. Conclusion. Deletion of TRPM2 can enhance the activation of caspase-1 and pyroptosis, which may be via modulating ROS production, suggesting that TRPM2 plays a critical role in immune adjustment.


Author(s):  
Mateus F. Rossato ◽  
Carin Hoffmeister ◽  
Gabriela Trevisan ◽  
Fabio Bezerra ◽  
Thiago M. Cunha ◽  
...  

AbstractObjectiveThe present study aimed to elucidate the mechanisms involved in MSU-induced IL-1β release in a rodent animal model of acute gout arthritis.MethodsPainful (mechanical and thermal hypersensitivity, ongoing pain and arthritis score) and inflammatory (oedema, plasma extravasation, cell infiltration and IL-1β release) parameters were assessed several hours after intra-articular injection of MSU (100 µg/articulation) in wild-type or knockout mice for Toll-like receptor 4 (TLR4), inducible nitric oxide synthase (iNOS), transient receptor potential (TRP) V1 and the IL-1 receptor (IL-1R). Also, wild-type animals were treated with clodronate, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) (TLR4 antagonist), spleen tyrosine kinase (SYK) inhibitor (iSYK), aminoguanidine (AMG, an iNOS inhibitor) or SB366791 (TRPV1 antagonist). Nitrite/nitrate and IL-1β levels were measured on the synovial fluid of wild-type mice, 2 h after intra-articular MSU injections, or medium from macrophages stimulated for MSU (1000 μg) for 2 h.ResultsIntra-articular MSU injection caused robust nociception and severe inflammation from 2 up to 6 h after injection, which were prevented by the pre-treatment with clodronate, LPS-RS, iSYK, AMG and SB366791, or the genetic ablation of TLR4, iNOS, TRPV1 or IL-1R. MSU also increased nitrite/nitrate and IL-1β levels in the synovial fluid, which was prevented by clodronate, LPS-RS, iSYK and AMG, but not by SB366791. Similarly, MSU-stimulated peritoneal macrophages released nitric oxide, which was prevented by LPS-RS, iSYK and AMG, but not by SB366791, and released IL-1β, which was prevented by LPS-RS, iSYK, AMG and SB366791.ConclusionOur data indicate that MSU may activate TLR4, SYK, iNOS and TRPV1 to induce the release of IL-1β by macrophages, triggering nociception and inflammation during acute gout attack.


2012 ◽  
Vol 287 (42) ◽  
pp. 35612-35620 ◽  
Author(s):  
Rainer Schindl ◽  
Reinhard Fritsch ◽  
Isaac Jardin ◽  
Irene Frischauf ◽  
Heike Kahr ◽  
...  

TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells.


Sign in / Sign up

Export Citation Format

Share Document