Rat hippocampal neurons in culture: potassium conductances

1984 ◽  
Vol 51 (6) ◽  
pp. 1409-1433 ◽  
Author(s):  
M. Segal ◽  
J. L. Barker

Two-electrode voltage-clamp methodology was used to analyze voltage-dependent ionic conductances in 81 rat hippocampal neurons grown in culture for 4-6 wk. Pyramidal and multipolar cells with 15- to 20-micron-diameter cell bodies were impaled with two independent KCl electrodes. The cells had resting potentials of -30 to -60 mV and an average input resistance of about 30 M omega. A depolarizing command applied to a cell maintained in normal medium invariably evoked a fast (2-10 ms) inward current that saturated the current-passing capacity of the system. This was blocked in a reversible manner by application of tetrodotoxin (TTX) (0.1-1.0 microM) near the recorded cell. In the presence of TTX, a depolarizing command evoked a rapidly rising (3-5 ms), rapidly decaying (25 ms) transient outward current reminiscent of "IA" reported in molluscan neurons. This was followed by a more slowly activating (approximately 100 ms) outward current response of greater amplitude that decayed with a time constant of about 2-3 s. These properties resemble those associated with the K+ conductance, IK, underlying delayed rectification described in many excitable membranes. IK was blocked by extracellular application of tetraethylammonium (TEA) but was insensitive to 4-aminopyridine (4-AP) at concentrations that effectively eliminated IA. IA, in turn, was only marginally depressed by TEA. Unlike IK, IA was completely inactivated when the membrane was held at potentials positive to -50 mV. Inactivation was completely removed by conditioning hyperpolarization at -90 mV. A brief hyperpolarizing pulse (10 ms) was sufficient to remove 95% of the inactivation. IA activated on commands to potentials more positive than -50 mV. The inversion potential of the ionic conductance underlying IA and IK was in the range of the K+ equilibrium potential, EK, as measured by the inversion of tail currents; and this potential was shifted in a depolarizing direction by elevated [K+]0. Thus, both current species reflect activation of membrane conductance to K+ ions. Hyperpolarizing commands from resting potentials revealed a time- and voltage-dependent slowly developing inward current in the majority of cells studied. This membrane current was observed in cells exhibiting "anomalous rectification" and was therefore labeled IAR. It was activated at potentials negative to -70 mV with a time constant of 100-200 ms and was not inactivated. A return to resting potential revealed a tail current that disappeared at about EK. IAR was blocked by extracellular CS+ and was enhanced by elevating [K+]0. It thus appears to be carried by inward movement of K+ ions.(ABSTRACT TRUNCATED AT 400 WORDS)

1986 ◽  
Vol 55 (4) ◽  
pp. 751-766 ◽  
Author(s):  
M. Segal ◽  
J. L. Barker

Rat hippocampal neurons grown in dissociated cell culture were studied in a medium containing 1 microM tetrodotoxin (TTX) and 25 mM tetraethylammonium (TEA), which eliminated the Na+ and K+ conductances normally activated by depolarizing current injections. In this medium depolarizing current pulses evoked depolarizing regenerative potentials and afterhyperpolarizations in most cells. Both of these events were blocked by close application of Co2+ or Cd2+. These events resemble Ca2+ spikes reported previously in hippocampal pyramidal cells. The membrane potential at which these Ca2+ spikes could be triggered and the rheobase current necessary were dependent on the potential at which the cell was conditioned: the more depolarized the holding potential, the more negative the absolute potential at which a spike could be triggered and the less rheobase current required. The duration of these Ca2+ spikes was also sensitive to the holding potential: the more depolarized the holding level, the longer the duration of the triggered spikes. The amplitude and duration of the Ca2+ spikes were enhanced in a reversible manner by 0.5-1.0 mM 4-aminopyridine (4-AP) delivered in the vicinity of the cell. Two-electrode voltage-clamp analysis of cells studied in TTX, TEA-containing medium revealed an inward current response that peaked in 25-50 ms during depolarizing commands. This response first became detectable during commands to -30 mV. It peaked in amplitude during commands to -10 mV and was enhanced in medium containing elevated [Ca2+]0. It was blocked by either 20 mM Mg2+, 0.2 mM Cd2+, 5 mM Co2+, or 5 mM Mn2+. These results have led us to identify this inward current response as ICa2+. 4-AP enhanced the magnitude and duration of ICa2+ independent of the drug's depressant effects on a transient K+ current also observed under these same experimental conditions. In many but not all cells the Ca2+ spike was followed by a long-lasting hyperpolarization associated with an increase in membrane conductance. This was blocked by Co2+. Under voltage clamp ICa2+ was followed by a slowly developing outward current response that was attenuated by Co2+ or Cd2+. These properties observed under current- and voltage-clamp recording conditions are superficially similar to those previously reported for Ca2+-dependent K+ conductance mechanisms (IC) recorded in these and other membranes. Long-lasting tail currents following activation of IC inverted in the membrane potential range for the K+ equilibrium potential found in these cells.


1971 ◽  
Vol 57 (3) ◽  
pp. 290-296 ◽  
Author(s):  
Gerhard Giebisch ◽  
Silvio Weidmann

Bundles of sheep ventricular fibers were voltage-clamped utilizing a modified sucrose gap technique and intracellular voltage control. An action potential was fired off in the usual way, and the clamp circuit was switched on at preselected times during activity. Clamping the membrane back to its resting potential during the early part of an action potential resulted in a surge of inward current. The initial amplitude of this current surge decreased as the clamp was switched on progressively later during the action potential. Inward current decreasing as a function of time was also recorded if the membrane potential was clamped beyond the presumed K equilibrium potential (to -130 mv). Clamping the membrane to the inside positive range (+40 mv to +60 mv) at different times of an action potential resulted in a step of outward current which was not time-dependent. The results suggest that normal repolarization of sheep ventricle depends on a time-dependent decrease of inward current (Na, Ca) rather than on a time-dependent increase of outward current (K).


1991 ◽  
Vol 97 (1) ◽  
pp. 35-54 ◽  
Author(s):  
E Nasi

Voltage-dependent membrane currents were investigated in enzymatically dissociated photoreceptors of Lima scabra using the whole-cell clamp technique. Depolarizing steps to voltages more positive than -10 mV elicit a transient inward current followed by a delayed, sustained outward current. The outward current is insensitive to replacement of a large fraction of extracellular Cl- with the impermeant anion glucuronate. Superfusion with tetraethylammonium and 4-aminopyridine reversibly abolishes the outward current, and internal perfusion with cesium also suppresses it, indicating that it is mediated by potassium channels. Isolation of the inward current reveals a fast activation kinetics, the peak amplitude occurring as early as 4-5 ms after stimulus onset, and a relatively rapid, though incomplete inactivation. Within the range of voltages examined, spanning up to +90 mV, reversal was not observed. The inward current is not sensitive to tetrodotoxin at concentrations up to 10 microM, and survives replacement of extracellular Na with tetramethylammonium. On the other hand, it is completely eliminated by calcium removal from the perfusing solution, and it is partially blocked by submillimolar concentrations of cadmium, suggesting that it is entirely due to voltage-dependent calcium channels. Analysis of the kinetics and voltage dependence of the isolated calcium current indicates the presence of two components, possibly reflecting the existence of separate populations of channels. Barium and strontium can pass through these channels, though less easily than calcium. Both the activation and the inactivation become significantly more sluggish when these ions serve as the charge carrier. A large fraction of the outward current is activated by preceding calcium influx. Suppression of this calcium-dependent potassium current shows a small residual component resembling the delayed rectifier. In addition, a transient outward current sensitive to 4-aminopyridine (Ia) could also be identified. The relevance of such conductance mechanisms in the generation of the light response in Lima photoreceptors is discussed.


1993 ◽  
Vol 69 (1) ◽  
pp. 241-247 ◽  
Author(s):  
W. Muller ◽  
H. D. Lux

1. Numerical methods were used to evaluate voltage space-clamp performance in the investigation of a voltage-dependent inward current similar to the noninactivating Ca current. In addition, the cell is equipped with a repolarizing system, represented by leak and outwardly rectifying outward conductances. The electrotonically compact model cell is represented by a cable with an electrotonic length of 1 space constant under control conditions, but that becomes effectively only 0.33 space constants during a 90% reduction of the leak and outward conductance. The cable is perfectly voltage clamped at one end. 2. The apparent voltage dependence, activation, and inactivation of the clamp current depend on the distribution of the membrane slope conductance along the cable; this depends on 1) the distribution of the inward current along the cable and 2) the amplitude of the inward current relative to the amplitudes of the leak and voltage-dependent outward currents. 3. Under control conditions, the membrane voltage decays steeply with distance from the command voltage at the clamp site to almost resting potential for most of the rest of the cable. This is because the leak and outward current are dominant over the inward current. The inward current is activated primarily at the clamped part of the cable. Clamp currents are activated instantaneously. The clamp-current current-voltage (I-V) relation is less steep with depolarization because the membrane potential for locations away from the clamp site lags behind the clamp potential. 4. When the conductances for leak and outward current are reduced by 90%, these conductances lose their dominance. The membrane slope conductance now has a range with negative values.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 274 (3) ◽  
pp. C577-C585 ◽  
Author(s):  
Gui-Rong Li ◽  
Haiying Sun ◽  
Stanley Nattel

The threshold potential for the classical depolarization-activated transient outward K+ current and Cl− current is positive to −30 mV. With the whole cell patch technique, a transient outward current was elicited in the presence of 5 mM 4-aminopyridine (4-AP) and 5 μM ryanodine at voltages positive to the K+ equilibrium potential in canine ventricular myocytes. The current was abolished by 200 μM Ba2+ or omission of external K+([Formula: see text]) and showed biexponential inactivation. The current-voltage relation for the peak of the transient outward component showed moderate inward rectification. The transient outward current demonstrated voltage-dependent inactivation (half-inactivation voltage: −43.5 ± 3.2 mV) and rapid, monoexponential recovery from inactivation (time constant: 13.2 ± 2.5 ms). The reversal potential responded to the changes in[Formula: see text] concentration. Action potential clamp revealed two phases of Ba2+-sensitive current during the action potential, including a large early transient component after the upstroke and a later outward component during phase 3 repolarization. The present study demonstrates that depolarization may elicit a Ba2+- and[Formula: see text]-sensitive, 4-AP-insensitive, transient outward current with inward rectification in canine ventricular myocytes. The properties of this K+ current suggest that it may carry a significant early outward current upon depolarization that may play a role in determining membrane excitability and action potential morphology.


1995 ◽  
Vol 74 (5) ◽  
pp. 2043-2050 ◽  
Author(s):  
J. A. David ◽  
R. M. Pitman

1. Membrane currents have been examined in the cell body of the fast coxal depressor motor neuron (Df) of the cockroach Periplaneta americana with the use of two-electrode voltage clamp. 2. Most of the outward current induced by membrane depolarizations to between -40 and +80 mV was carried by K+ because it was blocked by external tetraethylammonium+ (TEA+; 20 mM) and internal Cs+. 3. Over the potential range -20 to +80 mV, a large proportion of this TEA+/Cs(+)-sensitive K+ current consisted of two temporal components, a transient outward current (IKtrans) and a sustained outward current (IKsus). IKtrans and a large proportion of IKsus appeared to be calcium-activated potassium currents (IK,Ca,trans and IK,Ca,sus, respectively) because these were suppressed by injecting ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), removing Ca2+ from the saline or replacing Ca2+ with Ba2+. After suppression of IK,Ca by internal EGTA or Ca(2+)-free saline, membrane depolarizations positive to -40 mV induced voltage-dependent outward currents (IK,V), which consisted of single-component outward relaxations. 4. When outward currents were blocked by external TEA+/internal Cs+, a voltage-dependent inward current consisting of a transient and a sustained component was observed over the potential range -40 to +40 mV. Both components of this inward current appeared to be carried by Ca2+ because they were blocked by external Cd2+ (1 mM), verapamil (0.1 mM), nifedipine (0.1 mM), or diltiazem (0.1 mM). 5. Both the transient component of the calcium current (ICa,trans) and the sustained component (ICa,sus) were maximal at 0 mV and present when Ca2+ in the saline were replaced by Ba2+. The inactivation of ICa,trans is voltage dependent, the rate of inactivation increasing with membrane depolarization. 6. The current-voltage relationships of Ca2+ currents differed from those of calcium-activated K+ currents. It is proposed that the discrepancy between these current-voltage relationships arises from the rapidity with which IK,Ca is saturated by Ca2+ entering through voltage-dependent channels and because the apparent reversal potential for ICa is not at ECa. 7. Although the similarity in the shape of IK,Ca and ICa might suggest that the time course of IK,Ca is determined by the kinetics of ICa, this appears unlikely in view of the rapid saturation of IK,Ca by Ca2+, which considerably outlasts the period of Ca2+ influx.


1991 ◽  
Vol 66 (6) ◽  
pp. 1847-1857
Author(s):  
R. Y. Shi ◽  
F. Belardetti

1. The S-K+ conductance was isolated by voltage-clamping near the resting potential pleural mechanosensory neurons of Aplysia in culture. This background conductance is modulated in opposite directions by two distinct, transmitter-controlled second-messenger cascades: it is enhanced by the peptide FMRFamide through the 12-lipoxygenase pathway of arachidonic acid, and it is decreased by serotonin (5-HT) through adenosine 3',5'-cyclic monophosphate (cAMP)-dependent phosphorylation. 2. The dose-dependent activating effect of FMRFamide (0.01-500 microM) on the S-K+ conductance was measured in the presence and the absence either of 1-100 microM 8-bromo-cAMP (8b-cAMP, a membrane-permeable and hydrolysis-resistant analogue of cAMP), or of 0.01-0.1 microM 5-HT. 3. When 8b-cAMP was applied, it produced a slow inward current response due to closure of the S-K+ conductance. This response was antagonized by FMRFamide in a dose-dependent mode. Application of 100 microM FMRFamide, in the presence of 1-10 microM 8b-cAMP, produced an outward current response larger than the control FMRFa response and equal to the sum of the responses to FMRFamide alone and to 8b-cAMP alone. Similarly, at 500 microM, FMRFamide completely antagonized the closing action of maximal 8b-cAMP levels (100 microM). This observation confirms previous work that indicated that FMRFamide can reopen S-K+ channels closed by FMRFamide. 4. In contrast, in the presence of moderate concentrations of 5-HT (0.01 microM), which produce a slow inward current due to the closing of the S-K+ conductance, FMRFamide elicited a response that only partially antagonized this 5-HT action. Under maximal 5-HT concentrations (0.1 microM), the 5-HT response was not antagonized by any FMRFamide concentration: instead, the FMRFamide response was smaller than the control response without 5-HT. This experiment suggests that 5-HT, with an action independent from cAMP, inhibits the effect of FMRFamide on the S-K+ channel. 5. The dose-dependent inhibitory effect of 5-HT (0.001-10 microM) on the S-K+ conductance was measured in the presence and the absence either of FMRFamide (1-50 microM), which stimulates the release and metabolism of arachidonic acid in Aplysia sensory neurons or of arachidonic acid (25 microM). 6. Under these conditions, supramaximal concentrations of 5-HT could not completely suppress the slow outward current evoked by FMRFamide or by arachidonic acid, indicating that a component of the arachidonic-mediated response to FMRFamide is resistant to actions that maximally increase the S-K+ channel phosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)


1984 ◽  
Vol 52 (3) ◽  
pp. 469-487 ◽  
Author(s):  
M. Segal ◽  
J. L. Barker

Inhibitory postsynaptic potentials (IPSPs) recorded at room temperature in cultured rat hippocampal neurons had the same reversal potential as Cl--dependent voltage responses to gamma-aminobutyric acid (GABA). The IPSPs had a relatively short latency and long duration and could be evoked for hours without change in their properties. They were consistently depressed by picrotoxin applied near cell bodies of the neurons under study. Postsynaptic cells exhibiting IPSPs were voltage clamped with two electrodes for the purpose of studying the properties of evoked inhibitory postsynaptic currents (IPSCs). The IPSCs shared the same reversal potential and sensitivity to [Cl-]i as was observed with membrane current responses to GABA. They were both depressed by picrotoxin, with little if any change in the kinetics of ion channel activity either estimated from fluctuation analysis of drug-depressed current responses to GABA or calculated from semilogarithmic plots of IPSC decay. The decay of the IPSC was well fitted by a single exponential with a time constant of about 20 ms, which corresponded closely to the estimated average duration of an ion channel activated by GABA. IPSC decay was sensitive to the potential at which the cell was held, increasing by up to 50% in some cells clamped at positive potentials relative to values obtained at the level of the resting potential. IPSCs were enhanced in amplitude by diazepam, which also prolonged their time constant of decay. Diazepam potentiated membrane current responses to GABA and fluctuation analysis of potentiated responses indicated that the drug effects could be accounted for by an increase both in estimated channel duration and channel frequency. IPSCs were also altered by pentobarbital, which markedly prolonged their time constant of decay with little if any change in their amplitude. Pentobarbital enhanced current responses to GABA, an effect that could be accounted for primarily in terms of a pronounced increase in estimated channel lifetime. None of the drugs used in the present study affected the elementary conductance estimated from fluctuation analysis of GABA-evoked current response. The results suggest that IPSPs and IPSCs evoked in these cultured hippocampal cells are mediated by GABA, about 1,700 Cl- ion channels are activated at the peak of the synaptic conductance, and clinically important drugs act postsynaptically on the kinetics of the channels so as to change the amplitude and/or time course of the synaptic conductance.


1996 ◽  
Vol 76 (2) ◽  
pp. 668-682 ◽  
Author(s):  
F. M. Zhou ◽  
J. J. Hablitz

1. Whole cell patch-clamp techniques, combined with direct visualization of neurons, were used to study voltage-dependent potassium currents in layer 1 neurons and layer II/III pyramidal cells. 2. In the presence of tetrodotoxin, step depolarizations evoked an outward current. This current had a complex waveform and appeared to be a composite of early and late components. The early peak of the composite K+ outward current was larger in layer I neurons. 3. In both layer I and pyramidal cells, the composite outward K+ current could be separated into two components based on kinetic and pharmacological properties. The early component was termed I(A) because it was a transient outward current activating rapidly and then decaying. I(A) was more sensitive to blocking by 4-aminopyridine (4-AP) than tetraethylammonium (TEA). The second component, termed the delayed rectifier or I(DR), activated relatively slowly and did not decay significantly during a 200-ms test pulse. I(DR) was insensitive to blocking by 4-AP at concentrations up to 4 mM and blocked by > 60% by 40-60 mM TEA. 4. I(A) kinetics were examined in the presence of 40-60 mM TEA. Under these conditions, I(A) began to activate between -40 and -30 mV. Half-maximal activation occurred around 0 mV. In both layer I and pyramidal cells, the half-inactivation potential (Vh-inact) was around or more positive than -50 mV. At -60 mV, > 70% of I(A) conductance was available. I(A) decayed along a single exponential time course with a time constant of approximately 15 ms. This decay showed little voltage dependence. 5. In both layer I and pyramidal cells, I(DR) was studied in the presence of 4 mM 4-AP to block I(A) and in saline containing 0.2 mM Ca2+ and 3.6 mM Mg2+ to reduce contributions from Ca2+-dependent K+ currents. Under these conditions, I(DR) began to activate at -35 to -25 mV with Vh-act of 3.6 +/- 4.5 mV (mean +/- SD). The 10-90% rise time of I(DR) was 15 ms at 30 mV. At 2.2 ms after the onset of the command potential to +30 mV, I(DR) could reach a significant amplitude (approximately 1.5 nA in layer I neurons and 2.2 nA in pyramidal cells depending on the cell size). When long test pulses (> or = 1,000 ms) were used, a decay time constant approximately 800 ms at +40 mV was observed. In both layer I and pyramidal cells, steady state inactivation of I(DR) was minimal. 6. These results indicate that I(A) and I(DR) are the two major hyperpolarizing currents in layer I and pyramidal cells. The kinetics and pharmacological properties of I(A) and I(DR) were not significantly different in fast-spiking layer I neurons and regular-spiking layer II/III pyramidal cells. The relatively positive activation threshold (more than or equal to -40 mV) of both I(A) and I(DR) suggest that they do not play a role in neuronal behavior below action potential (AP) threshold and that their properties are more suitable to repolarize AP. The greater density of I(A) in layer I neurons appears responsible for fast spike generation.


2006 ◽  
Vol 96 (3) ◽  
pp. 1116-1123 ◽  
Author(s):  
Riccardo Bianchi ◽  
Shih-Chieh Chuang ◽  
Robert K. S. Wong

The pharmacology of a slowly inactivating outward current was examined using whole cell patch-clamp recordings in CA3 pyramidal cells of guinea pig hippocampal slices. The current had a low activation threshold (about −60 mV) and inactivated slowly (time constant of 3.4 ± 0.5 s at −50 mV) and completely at membrane voltages depolarized to −50 mV. The slowly inactivating outward current was mainly mediated by K+ with a reversal potential close to the equilibrium potential for K+. The slowly inactivating outward current had distinct pharmacological properties: its time course was not affected by extracellular Cs+ (1 mM) or 4-AP (1–5 mM)—broad spectrum inhibitors of K+ currents and of inactivating K+ currents, respectively. The presence of extracellular Mn2+ (0.5–1 mM), which suppresses several Ca2+-dependent K+ currents, also did not affect the slowly inactivating outward current. The current was partially suppressed by TEA (50 mM) and was blocked by intracellular Cs+ (134 mM). In addition, intracellular QX-314 (5 mM), a local anesthetic derivative, inhibited this current. The slowly inactivating outward current with its low activation threshold should be operational at the resting potential. Our results suggest that the transient outward current activated at subthreshold membrane potentials in hippocampal pyramidal cells consists of at least three components. In addition to the well-described A- and D-currents, the slowest decaying component reflects the time course of a distinct current, suppressible by QX-314.


Sign in / Sign up

Export Citation Format

Share Document