Extracellular potassium concentration in chronic alumina cream foci of cats

1984 ◽  
Vol 52 (3) ◽  
pp. 421-434 ◽  
Author(s):  
U. Heinemann ◽  
I. Dietzel

Changes in extracellular K+ concentration [( K+]o) were measured with ion-selective microelectrodes in chronic epileptic foci induced by topical application of A1(OH)3 cream on the sensorimotor cortex of cats. The foci were morphologically characterized by a scar surrounded by an area of marked gliosis. Base-line levels of [K+]o in gliotic tissue and its immediate border zone were comparable to those in normal cortical tissue. Peak levels of [K+]o obtained during repetitive electrical stimulation of the cortical surface and thalamic ventrobasal complex were only slightly enhanced with 11.6 mM in chronic foci and 10.8 mM in normal cortex. Iontophoretic K+ application into gliotic tissue was accompanied by slow negative potential shifts comparable to those observed in normal cortex. Passage of constant current through gliotic tissue caused local [K+]o changes in the vicinity of the current-passing electrode. Since these [K+]o changes were similar to those observed in normal tissue, it was concluded that the amount of transcellularly transported K ions was comparable in both tissues. Changes in the size of extracellular space (ES) were investigated by measuring local concentration changes of iontophoretically injected tetramethylammonium and choline ions. During stimulus-induced seizure activity, the ES shrank outside the gliotic area at sites of maximal [K+]o elevation, while it increased at sites within the gliotic tissue where [K+]o rises were smaller. The results suggest that the spatial buffer capacity of gliotic tissue for K+ is not severely impaired. Since the relationship between rises in [K+]o and subsequent undershoots at sites immediately bordering the gliotic tissue is comparable to that in normal cortex, the ability of this epileptic tissue for active K+ uptake appears to be unaffected. This conclusion is further supported by the observation that iontophoretically induced rises in [K+]o during undershoots are reduced to a similar extent as in normal cortex.

1973 ◽  
Vol 61 (3) ◽  
pp. 385-399 ◽  
Author(s):  
E. Neher ◽  
H. D. Lux

K+-sensitive liquid ion-exchanger microelectrodes are shown to be capable of measuring concentration changes which occur on a millisecond time scale. However, some quaternary ammonium ions, such as tetraethylammonium and acetylcholine, are able to block electrode function when present in concentrations as low as 10-4 to 10-3 M. Changes in extracellular potassium concentration caused by spike activity or voltage clamp pulses of exposed single neurons of the snail Helix pomatia may be measured by these electrodes. Quantitative analysis shows that the total amount of excess potassium found in the vicinity of the cell a short time after a clamp pulse, is in relatively good agreement with the amount of potassium carried by the membrane current.


1954 ◽  
Vol 37 (5) ◽  
pp. 631-641 ◽  
Author(s):  
Howard S. Frazier ◽  
Arthur Sicular ◽  
A. K. Solomon

The inward transport of potassium by separated dog erythrocytes has been studied at concentrations of potassium in the medium from 2.9 to 25.0 m.eq./liter and at 38.0 and 33.0°C. At the physiological concentration of external potassium (4.06 m.eq./liter medium), the inward potassium flux is 0.11 m.eq./liter cells hour and the glucose consumption is 2.0 mM/liter cells hour. The dependence of potassium influx on extracellular potassium concentration is given by the following equation, K influx (m.eq./liter cells hour) = 0.028 [K]amb. – 0.003 in which [K]amb. refers to the potassium concentration in the medium. In a single 93 hour experiment, 94 per cent of the intracellular potassium was exchanged at an apparently uniform rate. The average apparent activation energy for the process is 7,750 calories ± 2,000 calories/mol and there is some indication that the apparent activation energy of inward K transport decreases with increasing external K concentration.


1983 ◽  
Vol 49 (3) ◽  
pp. 831-850 ◽  
Author(s):  
R. P. Kraig ◽  
C. R. Ferreira-Filho ◽  
C. Nicholson

1. Extracellular pH (pHo) was measured in the cerebellar cortex of the rat using a recently developed liquid membrane ion-selective micropipette (ISM). pHo was determined during stimulus-evoked neuronal activity, elevated extracellular potassium concentration, [K+]o, spreading depression (SD), and complete ischemia. In many experiments [K+]o was simultaneously determined. 2. A train of local surface stimuli (LOC) produced an initial alkaline shift in pHo from a base line of 7.20-7.30 to 7.25-7.35. This was followed by a long-lasting acid phase that reached a plateau of 7.05-7.15 after 64 s of stimulation. pHo decrease was related to stimulus frequency, intensity, and duration. 3. Superfusion with Ringer solution containing manganese ions rapidly abolished parallel fiber-induced Purkinje cell synaptic depolarization together with the alkaline shifts while enhancing the acid shifts. 4. Superfusion of the cerebellar cortex with Ringer solution containing increasingly elevated [K+] progressively lowered pHo to a plateau of 6.95-7.05. The acidification occurred in the presence of ouabain but was reversed on return to the normal [K+]o or with the addition of the glycolytic blocker, fluoride. Stimulus-evoked alkaline shifts were enhanced by K+-Ringer superfusion. These experiments suggested that the acid shift was due to the metabolic production of an anion, possibly lactate. 5. Elevation of [K+]o above 8-12 mM often produced oscillation in pHo and [K+]o with a period of about 40 s. Sometimes these oscillations ended in a spontaneous SD or SD could be evoked by stimulation. Under these conditions of raised [K+]o, the SD consisted of a very pronounced alkaline transient followed by a small, long-lasting acid shift. When SD was induced by conditioning the cerebellum with proprionate or lowered NaCl, the alkaline phase was reduced and the acid enhanced. 6. Complete ischemia began with a progressive decrease of pHo and rise in [K+]o. When [K+]o reached 12 mM, a second more rapid rise in [K+]o to 40 mM or more occurred. This was correlated with 0.1-0.2 pHo transient increase similar to that seen during SD. pHo eventually reached a plateau of 6.60-6.80, close to neutrality. 7. Superfusion with Ringer solution containing acetazolamide immediately altered pHo homeostasis by increasing base-line pHo by about 0.10 and enhanced the induced pHo changes. These results suggest that carbonic anhydrase (CA) is important for acute buffering of the brain extracellular microenvironment. 8. The above results were interpreted in terms of changes in extracellular strong ion concentration differences ( [SID]o), extracellular concentration of total weak acid ( [Atot]o) and partial pressure of CO2 (Pco2) in the brain microenvironment. The results indicate that neuronal activity produces changes in many of the constituents of the microenvironment.


1983 ◽  
Vol 244 (5) ◽  
pp. C429-C432 ◽  
Author(s):  
M. M. Walsh-Reitz ◽  
F. G. Toback

The factors that induce kidney growth in K+-depleted animals are unknown. To determine if the low extracellular fluid K+ concentration could act as a growth stimulus, cultures of monkey kidney epithelial cells from the BSC-1 line were studied in media with a low-K+ concentration. Growth of confluent cultures was accelerated maximally at a K+ concentration of 3.2 mM, whereas concentrations of 2.9 and 3.5 mM were also stimulatory but to a lesser extent. Because growing renal tissue from K+-depleted rats was previously found to exhibit increased uptake of nutrient molecules, evidence for enhanced uptake was sought in BSC-1 cells after exposure to low-K+ medium. The uptake of 10 different nutrient molecules was enhanced in cells exposed to low-K+ medium for 30 s. These observations indicate that a reduced extracellular K+ concentration per se stimulates proliferation of renal epithelial cells in culture and could be one of the factors that mediate kidney growth in K+-depleted animals.


1992 ◽  
Vol 70 (S1) ◽  
pp. S263-S268 ◽  
Author(s):  
H. Steve White ◽  
Sien Yao Chow ◽  
Y. C. Yen-Chow ◽  
Dixon M. Woodbury

Potassium is tightly regulated within the extracellular compartment of the brain. Nonetheless, it can increase 3- to 4-fold during periods of intense seizure activity and 10- to 20-fold under certain pathological conditions such as spreading depression. Within the central nervous system, neurons and astrocytes are both affected by shifts in the extracellular concentration of potassium. Elevated potassium can lead to a redistribution of other ions (e.g., calcium, sodium, chloride, hydrogen, etc.) within the cellular compartment of the brain. Small shifts in the extracellular potassium concentration can markedly affect acid–base homeostasis, energy metabolism, and volume regulation of these two brain cells. Since normal neuronal function is tightly coupled to the ability of the surrounding glial cells to regulate ionic shifts within the brain and since both cell types can be affected by shifts in the extracellular potassium, it is important to characterize their individual response to an elevation of this ion. This review describes the results of side-by-side studies conducted on cortical neurons and astrocytes, which assessed the effect of elevated potassium on their resting membrane potential, intracellular volume, and their intracellular concentration of potassium, sodium, and chloride. The results obtained from these studies suggest that there exists a marked cellular heterogeneity between neurons and astrocytes in their response to an elevation in the extracellular potassium concentration.Key words: astrocytes, neurons, ion concentration, neuronal–glial interactions, mouse, cell culture.


1998 ◽  
Vol 79 (5) ◽  
pp. 2581-2592 ◽  
Author(s):  
E. Kremer ◽  
A. Lev-Tov

Kremer, E. and A. Lev-Tov. GABA-receptor–independent dorsal root afferents depolarization in the neonatal rat spinal cord. J. Neurophysiol. 79: 2581–2592, 1998. Dorsal root afferent depolarization and antidromic firing were studied in isolated spinal cords of neonatal rats. Spontaneous firing accompanied by occasional bursts could be recorded from most dorsal roots in the majority of the cords. The afferent bursts were enhanced after elevation of the extracellular potassium concentration ([K+]e) by 1–2 mM. More substantial afferent bursts were produced when the cords were isolated with intact brain stems. Rhythmic afferent bursts could be recorded from dorsal roots in some of the cords during motor rhythm induced by bath-applied serotonin and N-methyl-d-aspartate (NMDA). Bilaterally synchronous afferent bursts were produced in pairs of dorsal roots after replacing the NaCl in the perfusate with sodium-2-hydroxyethansulfonate or after application of the γ-aminobutyric acid-A (GABAA) receptor antagonist bicuculline with or without serotonin (5-HT) and NMDA. Antidromic afferent bursts also could be elicited under these conditions by stimulation of adjacent dorsal roots, ventrolateral funiculus axons, or ventral white commissural (VWC) fibers. The antidromic bursts were superimposed on prolonged dorsal root potentials (DRPs) and accompanied by a prolonged increase in intraspinal afferent excitability. Surgical manipulations of the cord revealed that afferent firing in the presence of bicuculline persisted in the hemicords after hemisection and still was observed after removal of their ventral horns. Cutting the VWC throughout its length did not perturb the bilateral synchronicity of the discharge. These findings suggest that the activity of dorsal horn neurons is sufficient to produce the discharge and that the bilateral synchronicity can be maintained by cross connectivity that is relayed from side to side dorsal to the VWC. Antagonists of GABAB, 5-HT2/5-HT1C, or glutamate metabotropic group II and III receptors could not abolish afferent depolarization in the presence of bicuculline. Depolarization comparable in amplitude to DRPs, could be produced in tetrodotoxin-treated cords by elevation of [K+]e to the levels reported to develop in the neonatal rat spinal cord in response to dorsal root stimulation. A mechanism involving potassium transients produced by neuronal activity therefore is suggested to be the major cause of the GABA-independent afferent depolarization reported in our study. Possible implications of potassium transients in the developing and the adult mammalian spinal cord are discussed.


Sign in / Sign up

Export Citation Format

Share Document