Alkaline and acid transients in cerebellar microenvironment

1983 ◽  
Vol 49 (3) ◽  
pp. 831-850 ◽  
Author(s):  
R. P. Kraig ◽  
C. R. Ferreira-Filho ◽  
C. Nicholson

1. Extracellular pH (pHo) was measured in the cerebellar cortex of the rat using a recently developed liquid membrane ion-selective micropipette (ISM). pHo was determined during stimulus-evoked neuronal activity, elevated extracellular potassium concentration, [K+]o, spreading depression (SD), and complete ischemia. In many experiments [K+]o was simultaneously determined. 2. A train of local surface stimuli (LOC) produced an initial alkaline shift in pHo from a base line of 7.20-7.30 to 7.25-7.35. This was followed by a long-lasting acid phase that reached a plateau of 7.05-7.15 after 64 s of stimulation. pHo decrease was related to stimulus frequency, intensity, and duration. 3. Superfusion with Ringer solution containing manganese ions rapidly abolished parallel fiber-induced Purkinje cell synaptic depolarization together with the alkaline shifts while enhancing the acid shifts. 4. Superfusion of the cerebellar cortex with Ringer solution containing increasingly elevated [K+] progressively lowered pHo to a plateau of 6.95-7.05. The acidification occurred in the presence of ouabain but was reversed on return to the normal [K+]o or with the addition of the glycolytic blocker, fluoride. Stimulus-evoked alkaline shifts were enhanced by K+-Ringer superfusion. These experiments suggested that the acid shift was due to the metabolic production of an anion, possibly lactate. 5. Elevation of [K+]o above 8-12 mM often produced oscillation in pHo and [K+]o with a period of about 40 s. Sometimes these oscillations ended in a spontaneous SD or SD could be evoked by stimulation. Under these conditions of raised [K+]o, the SD consisted of a very pronounced alkaline transient followed by a small, long-lasting acid shift. When SD was induced by conditioning the cerebellum with proprionate or lowered NaCl, the alkaline phase was reduced and the acid enhanced. 6. Complete ischemia began with a progressive decrease of pHo and rise in [K+]o. When [K+]o reached 12 mM, a second more rapid rise in [K+]o to 40 mM or more occurred. This was correlated with 0.1-0.2 pHo transient increase similar to that seen during SD. pHo eventually reached a plateau of 6.60-6.80, close to neutrality. 7. Superfusion with Ringer solution containing acetazolamide immediately altered pHo homeostasis by increasing base-line pHo by about 0.10 and enhanced the induced pHo changes. These results suggest that carbonic anhydrase (CA) is important for acute buffering of the brain extracellular microenvironment. 8. The above results were interpreted in terms of changes in extracellular strong ion concentration differences ( [SID]o), extracellular concentration of total weak acid ( [Atot]o) and partial pressure of CO2 (Pco2) in the brain microenvironment. The results indicate that neuronal activity produces changes in many of the constituents of the microenvironment.

1992 ◽  
Vol 70 (S1) ◽  
pp. S263-S268 ◽  
Author(s):  
H. Steve White ◽  
Sien Yao Chow ◽  
Y. C. Yen-Chow ◽  
Dixon M. Woodbury

Potassium is tightly regulated within the extracellular compartment of the brain. Nonetheless, it can increase 3- to 4-fold during periods of intense seizure activity and 10- to 20-fold under certain pathological conditions such as spreading depression. Within the central nervous system, neurons and astrocytes are both affected by shifts in the extracellular concentration of potassium. Elevated potassium can lead to a redistribution of other ions (e.g., calcium, sodium, chloride, hydrogen, etc.) within the cellular compartment of the brain. Small shifts in the extracellular potassium concentration can markedly affect acid–base homeostasis, energy metabolism, and volume regulation of these two brain cells. Since normal neuronal function is tightly coupled to the ability of the surrounding glial cells to regulate ionic shifts within the brain and since both cell types can be affected by shifts in the extracellular potassium, it is important to characterize their individual response to an elevation of this ion. This review describes the results of side-by-side studies conducted on cortical neurons and astrocytes, which assessed the effect of elevated potassium on their resting membrane potential, intracellular volume, and their intracellular concentration of potassium, sodium, and chloride. The results obtained from these studies suggest that there exists a marked cellular heterogeneity between neurons and astrocytes in their response to an elevation in the extracellular potassium concentration.Key words: astrocytes, neurons, ion concentration, neuronal–glial interactions, mouse, cell culture.


1984 ◽  
Vol 52 (3) ◽  
pp. 421-434 ◽  
Author(s):  
U. Heinemann ◽  
I. Dietzel

Changes in extracellular K+ concentration [( K+]o) were measured with ion-selective microelectrodes in chronic epileptic foci induced by topical application of A1(OH)3 cream on the sensorimotor cortex of cats. The foci were morphologically characterized by a scar surrounded by an area of marked gliosis. Base-line levels of [K+]o in gliotic tissue and its immediate border zone were comparable to those in normal cortical tissue. Peak levels of [K+]o obtained during repetitive electrical stimulation of the cortical surface and thalamic ventrobasal complex were only slightly enhanced with 11.6 mM in chronic foci and 10.8 mM in normal cortex. Iontophoretic K+ application into gliotic tissue was accompanied by slow negative potential shifts comparable to those observed in normal cortex. Passage of constant current through gliotic tissue caused local [K+]o changes in the vicinity of the current-passing electrode. Since these [K+]o changes were similar to those observed in normal tissue, it was concluded that the amount of transcellularly transported K ions was comparable in both tissues. Changes in the size of extracellular space (ES) were investigated by measuring local concentration changes of iontophoretically injected tetramethylammonium and choline ions. During stimulus-induced seizure activity, the ES shrank outside the gliotic area at sites of maximal [K+]o elevation, while it increased at sites within the gliotic tissue where [K+]o rises were smaller. The results suggest that the spatial buffer capacity of gliotic tissue for K+ is not severely impaired. Since the relationship between rises in [K+]o and subsequent undershoots at sites immediately bordering the gliotic tissue is comparable to that in normal cortex, the ability of this epileptic tissue for active K+ uptake appears to be unaffected. This conclusion is further supported by the observation that iontophoretically induced rises in [K+]o during undershoots are reduced to a similar extent as in normal cortex.


2003 ◽  
Vol 90 (4) ◽  
pp. 2163-2170 ◽  
Author(s):  
Frank Richter ◽  
Sven Rupprecht ◽  
Alfred Lehmenkühler ◽  
Hans-Georg Schaible

Spreading depression (SD), a neuronal mechanism involved in brain pathophysiology, occurs in brain areas with high neuronal density such as the cerebral cortex. By contrast, the brain stem is thought to be resistant to SD. Here we show that DC shifts resembling cortical SD can be elicited in rat brain stem by topical application of KCl but not by pricking the brain stem. However, this was only possible until postnatal day 13, and, in addition, susceptibility for SD had to be enhanced. The latter was achieved by superfusion of the brain stem for 45 min with a solution containing acetate instead of chloride ions. Transient asphyxia or hypoxia by 2 min breathing 6% O2 in N2 had a similar effect. Negative brain stem DC deflections were paralleled by an increase of extracellular potassium concentration ≤40 mM and were spreading, but unlike cortical SD they were not inducible by glutamate and N-methyl-d-aspartate (NMDA). Time course and slope of brain stem SD either resembled cortical SD or were long-lasting and sustained. The latter stopped normal breathing. Different from cortical SD, negative brain stem DC deflections were changed in their slope (mostly converted into sustained shape, peak time was significantly prolonged, decline-time and duration were prolonged), but not abolished by the NMDA receptor blocker MK-801. Thus we demonstrate that the immature brain stem has the capacity to generate negative DC shifts, which could be relevant as a risk factor in newborn brain stem function.


1978 ◽  
Vol 41 (4) ◽  
pp. 1026-1039 ◽  
Author(s):  
C. Nicholson ◽  
G. ten Bruggencate ◽  
H. Stockle ◽  
R. Steinberg

1. Local stimulus-evoked changes in concentration of extracellular calcium ions, [Ca2+]0, and potassium ions, [K+[0, were measured in the cerebellar cortex of the cat using paired ion-selected micropipettes. 2. Repetitive stimulation of 30 s duration decreased [Ca2+]0 from a base line of 1.2 mM to as low as 0.8 mM and increased [K+]0 from 3 mM to as much as 8 mM. The magnitude of the changes was directly related to stimulus frequency. Laminar analysis showed that the greatest ion changes occurred at the level of maximum parallel fiber-Purkinje cell dendrite stimulation, but that the [Ca2+]0 changes were more localized than the [K+]0 changes. 3. Combining real-time current-source density measurement with [K+]0 determination and local manganese application, showed that the Mn blocked parallel fiber-Purkinje cell synaptic transmission, but that much of the [K+]0 changes persisted. Thus, a large part of the [K+]0 flux most probably originated in the parallel fibers. In contrast, [Ca2+]0 changes were abolished by the Mn, indicating that the decrease in this ion was probably associated with synaptic transmission or dendritic events. 4. In a few cases, spreading depression occurred in the cat cerebellar cortex. This could be accompanied by decreases in [Ca2+]0 to as low as 0.12 mM and increases in [K+]0 in excess of 48 mM. 5. These results show that significant changes in [Ca2+]0 and [K+]0 occur during cerebellar stimulation and indicate possible origins of the ion fluxes in terms of neuronal elements. This work also shows that the cerebellar cortex of the cat can support spreading depression. The present results, together with those of earlier studies on [Ca2+]0 and [K+]0 changes in the presence of aminopyridine in the cat cerebellum, suggest that synaptic or dendritic electroresponsive properties may play a role in the observed [Ca2+]0 and [K+]0 changes.


1990 ◽  
Vol 24 (4) ◽  
pp. 569-575 ◽  
Author(s):  
E. Sykov/.a ◽  
P. Jendelov/.a ◽  
J. Svoboda ◽  
G. Sedman ◽  
K.T. Ng

1994 ◽  
Vol 197 (1) ◽  
pp. 295-308
Author(s):  
C H Johnson ◽  
Y Nakaoka ◽  
I Miwa

In some neural models of circadian rhythmicity, membrane potential and transmembrane flux of potassium and calcium ions appear to play important roles in the entrainment and central mechanisms of the biological clock. We wondered whether these cellular variables might be generally involved in circadian clocks, even non-neural clocks. Therefore, we tested the impact of changing extracellular potassium level on the circadian rhythm of photoaccumulation of Paramecium cells, whose membrane potential responds to changes of extracellular potassium in a manner similar to that of neurones. We found that pulse or step changes of extracellular potassium concentration did not phase-shift the circadian clock of P. bursaria cells in a phase-specific manner. Furthermore, modifying the extracellular concentration of calcium did not affect the magnitude of light-induced phase resetting. Therefore, while membrane potential and calcium fluxes may be crucial components of the circadian clock system in some organisms, especially in neural systems that involve intercellular communication, the P. bursaria data indicate that membrane potential changes are not necessarily an intrinsic component of circadian organization at the cellular level.


2008 ◽  
Vol 99 (6) ◽  
pp. 2902-2915 ◽  
Author(s):  
Ulf Strauss ◽  
Fu-Wen Zhou ◽  
Jeannette Henning ◽  
Arne Battefeld ◽  
Andreas Wree ◽  
...  

Abnormal neuronal activity in the subthalamic nucleus (STN) plays a crucial role in the pathophysiology of Parkinson's disease (PD). Although altered extracellular potassium concentration ([K+]o) and sensitivity to [K+]o modulates neuronal activity, little is known about the potassium balance in the healthy and diseased STN. In vivo measurements of [K+]o using ion-selective electrodes demonstrated a twofold increase in the decay time constant of lesion-induced [K+]o transients in the STN of adult Wistar rats with a unilateral 6-hydroxydopamine (6-OHDA) median forebrain bundle lesion, employed as a model of PD, compared with nonlesioned rats. Various [K+]o concentrations (1.5–12.5 mM) were applied to in vitro slice preparations of three experimental groups of STN slices from nonlesioned control rats, ipsilateral hemispheres, and contralateral hemispheres of lesioned rats. The majority of STN neurons of nonlesioned rats and in slices contralateral to the lesion fired spontaneously, predominantly in a regular pattern, whereas those in slices ipsilateral to the lesion fired more irregularly or even in bursts. Experimentally increased [K+]o led to an increase in the number of spontaneously firing neurons and action potential firing rates in all groups. This was accompanied by a decrease in the amplitude of post spike afterhyperpolarization (AHP) and the amplitude and duration of the posttrain AHP. Lesion effects in ipsilateral neurons at physiological [K+]o resembled the effects of elevated [K+]o in nonlesioned rats. Our data suggest that changed potassium sensitivity due to conductivity alterations and delayed clearance may be critical for shaping STN activity in parkinsonian states.


1979 ◽  
Vol 74 (6) ◽  
pp. 713-737 ◽  
Author(s):  
B Oakley ◽  
D G Flaming ◽  
K T Brown

It has been hypothesized that the light-evoked rod hyperpolarization (the receptor potential) initiates the light-evoked decrease in extracellular potassium ion concentration, [K+]o, in the distal retina. The hypothesis was tested using the isolated, superfused retina of the toad, Bufo marinus; the receptor potential was recorded intracellularly from red rods, and [K+]o was measured in the photoreceptor layer with K+-specific microelectrodes. In support of the hypothesis, variations in stimulus irradiance or duration, or in retinal temperature, produced qualitatively similar effects on both the receptor potential and the decrease in [K+]o. A mechanism for the relationship between the receptor potential and the decrease in [K+]o was suggested by Matsuura et al. (1978. Vision Res. 18:767-775). In the dark, the passive efflux of K+ out of the rod is balanced by an equal influx of K+ fromthe Na+/K+ pump. The light-evoked rod hyperpolarization is assumed to reduce the passive efflux, with little effect on the pump. Thus, the influx will exceed the efflux, and [K+]o will decrease. Consistent with this mechanism, the largest and most rapid decrease in [K+]o was measured adjacent to the rod inner segments, where the Na+/K+ pump is most likely located; in addition, inhibition of the pump with ouabain abolished the decrease in [K]o more rapidly than the rod hyperpolarization. Based upon this mechanism, Matsuura et al. (1978) developed a mathematical model: over a wide range of stimulus irradiance, this model successfully predicts the time-course of the decrease in [K+]o, given only the time-course of the rod hyperpolarization.


Sign in / Sign up

Export Citation Format

Share Document