Long-latency spinal reflexes in humans

1985 ◽  
Vol 53 (6) ◽  
pp. 1604-1618 ◽  
Author(s):  
K. Darton ◽  
O. C. Lippold ◽  
M. Shahani ◽  
U. Shahani

Stretching human muscles with a mechanical device gave rise to multiple peaks in the rectified and averaged electromyogram. In the first dorsal interosseous the latency of the first peak (M1) was 32.4 +/- 2.4 ms (SD) and the latency of the second peak (M2) was 55.1 +/- 11.3 ms, in both cases measured from the time of the stimulus to the take-off point of the peak. Often a third peak (M3) was seen, having a considerably longer latency. The origin of peak M1 was considered to be in the stretch reflex arc because of its latency and its invariable association with muscle movement. Peak M2 was due to stimulation of afferent terminals in the skin and/or subcutaneous tissues by the mechanical device producing the muscle stretch. The conduction velocity of the pathway involved in the generation of the M1 component is the same as that for M2. This implies that central processing in the spinal cord delays the M2 response. The M2 mechanism does not involve a transcortical (long-loop) pathway because in foot muscles the M1-M2 delay remains the same as is found for hand muscles, although M1 latency is prolonged (to 39.4 +/- 6.2 ms for extensor digitorum longus). This indicates that there is not time for M2 impulses to traverse a pathway any longer than that passing to and from the spinal cord.

1964 ◽  
Vol 207 (2) ◽  
pp. 303-307 ◽  
Author(s):  
B. J. Prout ◽  
J. H. Coote ◽  
C. B. B. Downman

In cats anesthetized with chloralose-urethane mixture, stimulation of an afferent nerve evoked a vasoconstrictor reflex (VCR) and a galvanic skin response (GSR) in the pads of the feet. Stimulation of the ventromedial medullary reticular substance at the level of the obex abolished the VCR and the GSR. VCR could also be reduced by occlusion during prolonged stimulation of another spinal or visceral afferent pathway. Medulla stimulation was effective without itself causing a sympathetic discharge to the paw, showing that inhibition rather than occlusion was operative. Anterior cerebellar stimulation also inhibited the VCR. Carotid sinus nerve stimulation did not abolish the VCR. It is concluded that the effective mechanism includes a bulbospinal inhibitory path projecting on a spinal vasoconstrictor reflex arc. This arrangement is similar to the descending pathways inhibiting other spinal reflexes but the VCR-inhibitory path can be activated independently of them.


2004 ◽  
Vol 92 (5) ◽  
pp. 2694-2703 ◽  
Author(s):  
Y. Li ◽  
X. Li ◽  
P. J. Harvey ◽  
D. J. Bennett

In the months after spinal cord injury, motoneurons develop large voltage-dependent persistent inward currents (PICs) that cause sustained reflexes and associated muscle spasms. These muscle spasms are triggered by any excitatory postsynaptic potential (EPSP) that is long enough to activate the PICs, which take >100 ms to activate. The PICs are composed of a persistent sodium current (Na PIC) and a persistent calcium current (Ca PIC). Considering that Ca PICs have been shown in other neurons to be inhibited by baclofen, we tested whether part of the antispastic action of baclofen was to reduce the motoneuron PICs as opposed to EPSPs. The whole sacrocaudal spinal cord from acute spinal rats and spastic chronic spinal rats (with sacral spinal transection 2 mo previously) was studied in vitro. Ventral root reflexes were recorded in response to dorsal root stimulation. Intracellular recordings were made from motoneurons, and slow voltage ramps were used to measure PICs. Chronic spinal rats exhibited large monosynaptic and long-lasting polysynaptic ventral root reflexes, and motoneurons had associated large EPSPs and PICs. Baclofen inhibited these reflexes at very low doses with a 50% inhibition (EC50) of the mono- and polysynaptic reflexes at 0.26 ± 0.07and 0.25 ± 0.09 (SD) μM, respectively. Baclofen inhibited the monosynaptic reflex in acute spinal rats at even lower doses (EC50 = 0.18 ± 0.02 μM). In chronic (and acute) spinal rats, all reflexes and EPSPs were eliminated with 1 μM baclofen with little change in motoneuron properties (PICs, input resistance, etc), suggesting that baclofen's antispastic action is presynaptic to the motoneuron. Unexpectedly, in chronic spinal rats higher doses of baclofen (20–30 μM) significantly increased the total motoneuron PIC by 31.6 ± 12.4%. However, the Ca PIC component (measured in TTX to block the Na PIC) was significantly reduced by baclofen. Thus baclofen increased the Na PIC and decreased the Ca PIC with a net increase in total PIC. By contrast, when a PIC was induced by 5-HT (10–30 μM) in motoneurons of acute spinal rats, baclofen (20–30 μM) significantly decreased the PIC by 38.8 ± 25.8%, primarily due to a reduction in the Ca PIC (measured in TTX), which dominated the total PIC in these acute spinal neurons. In summary, baclofen does not exert its antispastic action postsynaptically at clinically achievable doses (<1 μM), and at higher doses (10–30 μM), baclofen unexpectedly increases motoneuron excitability (Na PIC) in chronic spinal rats.


1991 ◽  
Vol 65 (5) ◽  
pp. 1089-1097 ◽  
Author(s):  
J. Noth ◽  
M. Schwarz ◽  
K. Podoll ◽  
F. Motamedi

1. The aim of the present study was to identify the type of spinal afferents involved in the generation of the long-latency response in intrinsic human hand muscles. Position-controlled extensions were imposed on the index finger or on the wrist of healthy subjects who were exerting a steady voluntary flexion force at the relevant joint. Averaged surface electromyographic (EMG) responses of the first dorsal interosseus muscle (FDI) or of the wrist flexors were evaluated with respect to latency and size. 2. Small transient angular displacements of the index finger (1 degree, as measured at the metacarpophalangeal joint), which are supposed to excite primary rather than secondary afferents, evoked two clearly discernible EMG responses with mean latencies of 32.3 ms (M1 response) and 54.7 ms (M2 response), respectively. The size of the M2 response exceeded the size of the M1 response by 60%. In the wrist flexors, transient stretch (1 degree) gave rise to a large M1 response (latency 22.8 ms) and a small, inconstent M2 response. 3. Small-amplitude vibration of the index finger elicited EMG responses in the FDI that were qualitatively and quantitatively similar to those seen in response to small transient stretches of the index finger. This was also true for fast ramp-and-hold stretches (stretch velocity 400 degrees/s, amplitude 5 degrees), whereas slow ramp-and-hold stretches (125 degrees/s, 5 degrees) elicited predominantly M2 responses. 4. In the FDI, the mechanical threshold of the M1 and M2 response to the transient angular displacement was approximately 0.15 degrees, with a tendency for the M2 response to appear at a lower threshold.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 120 (6) ◽  
pp. 3172-3186 ◽  
Author(s):  
R. Zhou ◽  
B. Parhizi ◽  
J. Assh ◽  
L. Alvarado ◽  
R. Ogilvie ◽  
...  

Spinal networks in the cervical and lumbar cord are actively coupled during locomotion to coordinate arm and leg activity. The goals of this project were to investigate the intersegmental cervicolumbar connectivity during cycling after incomplete spinal cord injury (iSCI) and to assess the effect of rehabilitation training on improving reflex modulation mediated by cervicolumbar pathways. Two studies were conducted. In the first, 22 neurologically intact (NI) people and 10 people with chronic iSCI were recruited. The change in H-reflex amplitude in flexor carpi radialis (FCR) during leg cycling and H-reflex amplitude in soleus (SOL) during arm cycling were investigated. In the second study, two groups of participants with chronic iSCI underwent 12 wk of cycling training: one performed combined arm and leg cycling (A&L) and the other legs only cycling (Leg). The effect of training paradigm on the amplitude of the SOL H-reflex was assessed. Significant reduction in the amplitude of both FCR and SOL H-reflexes during dynamic cycling of the opposite limbs was found in NI participants but not in participants with iSCI. Nonetheless, there was a significant reduction in the SOL H-reflex during dynamic arm cycling in iSCI participants after training. Substantial improvements in SOL H-reflex properties were found in the A&L group after training. The results demonstrate that cervicolumbar modulation during rhythmic movements is disrupted in people with chronic iSCI; however, this modulation is restored after cycling training. Furthermore, involvement of the arms simultaneously with the legs during training may better regulate the leg spinal reflexes.NEW & NOTEWORTHY This work systematically demonstrates the disruptive effect of incomplete spinal cord injury on cervicolumbar coupling during rhythmic locomotor movements. It also shows that the impaired cervicolumbar coupling could be significantly restored after cycling training. Actively engaging the arms in rehabilitation paradigms for the improvement of walking substantially regulates the excitability of the lumbar spinal networks. The resulting regulation may be better than that obtained by interventions that focus on training of the legs only.


2019 ◽  
Vol 152 ◽  
pp. 212-224 ◽  
Author(s):  
Mateus Vidigal de Castro ◽  
Moníze Valéria Ramos da Silva ◽  
Gabriela Bortolança Chiarotto ◽  
Bruno Bosh Volpe ◽  
Maria Helena Santana ◽  
...  

2020 ◽  
Vol 39 (6) ◽  
pp. 505-509
Author(s):  
Sven Korte ◽  
Frank Runge ◽  
Magdalena M. Wozniak ◽  
Florian T. Ludwig ◽  
Daniela Smieja ◽  
...  

Intrathecal (IT) dosing (ie, injection into the subarachnoidal space at the lumbar region) is a common route of administration in cynomolgus monkey preclinical safety studies conducted for antisense oligonucleotides (ASO) that target central nervous system diseases. Herein we report on neurological signs that have been observed in 28 IT studies conducted in 1,016 cynomolgus monkeys. Neurological signs were classified into 5 groups: (1) A nonadverse transient absence of lower spinal reflexes. This observation occurred at low incidence in nontreated animals and in those that were injected artificial cerebrospinal fluid. The incidence increased in animals that were injected an ASO. Reflexes were present again at 24 hours or 48 hours after dosing. The incidence appeared to increase with dose. (2) Test-article-related adverse muscle tremor or muscle spasticity occurring during the injection procedure or immediately thereafter. In one-third of animals this finding responded to treatment with diazepam, in two-third it required euthanasia. (3) Neurological findings occurring between 30 minutes and 4 hours after dosing were characterized by any combination of ataxia, paresis, nystagmus, urinary incontinence, or muscle tremor. Those conditions either spontaneously resolved or they slowly worsened, eventually resulting in a poor general condition. (4) Neurological findings due to spinal cord injury were characterized by rapidly progressing paralysis of hind limbs. Magnetic resonance imaging revealed a focal hyperintense lesion, indicative of spinal cord necrosis. (5) Test-article-related adverse hind limb paresis or paralysis that occurred between 2 and 18 days after dosing. Those findings were rare and resulted in a poor general condition requiring euthanasia.


Sign in / Sign up

Export Citation Format

Share Document