Effect of tone-pulse rise time on rate-level functions of cat auditory cortex neurons: excitatory and inhibitory processes shaping responses to tone onset

1988 ◽  
Vol 59 (5) ◽  
pp. 1524-1539 ◽  
Author(s):  
D. P. Phillips

1. The responses of cat auditory cortex neurons are largely dominated by transient stimulus events, including tone-pulse onset. In addition, these neurons often receive sensitive inhibitory inputs in tone frequency-intensity domains flanking the excitatory one centered at characteristic frequency (CF). These observations suggest that auditory cortex neurons might be sensitive to the spectral splatter that occurs at tone onset due to the tone-pulse envelope shape. 2. To investigate this hypothesis, single neurons in the primary auditory cortex of anesthetized cats were studied for the form of their spike-rate versus tone-level functions using CF tone pulses of different rise times. Stimuli were presented to the contralateral ear using a calibrated, sealed stimulus delivery system. 3. Some neurons with monotonic rate-level functions for conventional (5-10 ms) rise-time tones were relatively insensitive to variations in tone-pulse rise time. Other monotonic neurons showed rate-level functions that became increasingly bell shaped for shorter rise-time stimuli. All neurons with bell-shaped, nonmonotonic rate-level functions for conventional rise-time tones became increasingly nonmonotonic for shorter rise-time signals. In the same neurons, lengthening of tone rise times typically reduced the slope of the high-intensity, descending limb of the rate-level function, in some cases to zero. 4. This pattern of rise-time effects is consistent with previous evidence on the association between rate-level function shape and the presence of inhibitory tone response areas flanking the excitatory one at CF. The present data suggest that cortical neurons are sensitive to the gross shape of the short-term stimulus spectrum at tone onset, and that for many neurons, the nonmonotonic form of CF tone rate level functions may be configured as much by the rate of tone onset as by the plateau amplitude of a tone pulse.

1995 ◽  
Vol 73 (5) ◽  
pp. 1876-1891 ◽  
Author(s):  
M. B. Calford ◽  
M. N. Semple

1. Several studies of auditory cortex have examined the competitive inhibition that can occur when appropriate sounds are presented to each ear. However, most cortical neurons also show both excitation and inhibition in response to presentation of stimuli at one ear alone. The extent of such inhibition has not been described. Forward masking, in which a variable masking stimulus was followed by a fixed probe stimulus (within the excitatory response area), was used to examine the extent of monaural inhibition for neurons in primary auditory cortex of anesthetized cats (barbiturate or barbiturate-ketamine). Both the masking and probe stimuli were 50-ms tone pips presented to the contralateral ear. Most cortical neurons showed significant forward masking at delays beyond which masking effects in the auditory nerve are relatively small compared with those seen in cortical neurons. Analysis was primarily concerned with such components. Standard rate-level functions were also obtained and were examined for nonmonotonicity, an indication of level-dependent monaural inhibition. 2. Consistent with previous reports, a wide range of frequency tuning properties (excitatory response area shapes) was found in cortical neurons. This was matched by a wide range of forward-masking-derived inhibitory response areas. At the most basic level of analysis, these were classified according to the presence of lateral inhibition, i.e., where a probe tone at a neuron's characteristic frequency was masked by tones outside the limits of the excitatory response area. Lateral inhibition was a property of 38% of the sampled neurons. Such neurons represented 77% of those with nonmonotonic rate-level functions, indicating a strong correlation between the two indexes of monaural inhibition; however, the shapes of forward masking inhibitory response areas did not usually correspond with those required to account for the "tuning" of a neuron. In addition, it was found that level-dependent inhibition was not added to by forward masking inhibition. 3. Analysis of the discharges to individual stimulus pair presentations, under conditions of partial masking, revealed that discharges to the probe occurred independently of discharges to the preceding masker. This indicates that even when the masker is within a neuron's excitatory response area, forward masking is not a postdischarge habituation phenomenon. However, for most neurons the degree of masking summed over multiple stimulus presentations appears determined by the same stimulus parameters that determine the probability of response to the masker.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 92 (3) ◽  
pp. 1445-1463 ◽  
Author(s):  
Yves Manunta ◽  
Jean-Marc Edeline

Neuromodulators have long been viewed as permissive factors in experience-induced cortical plasticity, both during development and in adulthood. Experiments performed over the last two decades have reported the potency of acetylcholine to promote changes in functional properties of cortical cells in the auditory, visual, and somatosensory modality. In contrast, very few attempts were made with the monoaminergic systems. The present study evaluates how repeated presentation of brief pulses of noradrenaline (NA) concomitant with presentation of a particular tone frequency changes the frequency tuning curves of auditory cortex neurons determined at 20 dB above threshold. After 100 trials of NA-tone pairing, 28% of the cells (19/67) exhibited selective tuning modifications for the frequency paired with NA. All the selective effects were obtained when the paired frequency was within 1/4 of an octave from the initial best frequency. For these cells, selective decreases were prominent (15/19 cases), and these effects lasted ≥15 min after pairing. No selective effects were observed under various control conditions: tone alone ( n = 10 cells), NA alone ( n = 11 cells), pairing with ascorbic acid ( n = 6 cells), or with GABA ( n = 20 cells). Selective effects were observed when the NA-tone pairing was performed in the presence of propranolol (4/10 cells) but not when it was performed in the presence phentolamine (0/13 cells), suggesting that the effects were mediated by alpha receptors. These results indicate that brief increases in noradrenaline concentration can trigger selective modifications in the tuning curves of cortical neurons that, in most of the cases, go in opposite direction compared with those usually reported with acetylcholine.


2000 ◽  
Vol 84 (5) ◽  
pp. 2426-2439 ◽  
Author(s):  
Silke Biermann ◽  
Peter Heil

Sound onsets constitute particularly salient transients and evoke strong responses from neurons of the auditory system, but in the past, such onset responses have often been analyzed with respect to steady-state features of sounds, like the sound pressure level. Recent electrophysiological studies of single neurons from the auditory cortex of anesthetized cats have revealed that the timing and strength of onset responses are shaped by dynamic stimulus properties at their very onsets. Here we demonstrate with magnetoencephalography that stimulus-response relationships very similar to those of the single neurons are observed in two onset components, N100m and P50m, of auditory evoked magnetic fields (AEFs) from the auditory cortex of awake humans. In response to tones shaped with cosine-squared rise functions, N100m and P50m peak latencies vary systematically with tone level and rise time but form a rather invariant function of the acceleration of the envelope at tone onset. Hence N100m and P50m peak latencies, as well as peak amplitudes, are determined by dynamic properties of the stimuli within the first few milliseconds, though not necessarily by acceleration. The changes of N100m and P50m peak latencies with rise time and level are incompatible with a fixed-amplitude threshold model. The direct comparison of the neuromagnetic and single-neuron data shows that, on average, the variance of the neuromagnetic data is larger by one to two orders of magnitude but that favorable measurements can yield variances as low as those derived from neurons with mediocre precision of response timing. The striking parallels between the response timing of single cortical neurons and of AEFs provides a stronger link between single neuron and population activity.


2000 ◽  
Vol 84 (2) ◽  
pp. 934-952 ◽  
Author(s):  
Jean-Marc Edeline ◽  
Yves Manunta ◽  
Elizabeth Hennevin

The present study describes how the frequency receptive fields (RF) of auditory thalamus neurons are modified when the state of vigilance of an unanesthetized animal naturally fluctuates among wakefulness (W), slow-wave sleep (SWS), and paradoxical sleep (PS). Systematic quantification of several RF parameters—including strength of the evoked responses, response latency, acoustic threshold, shape of rate-level function, frequency selectivity, and RF size—was performed while undrugged, restrained guinea pigs presented spontaneous alternances of W, SWS, and PS. Data are from 102 cells recorded during W and SWS and from 53 cells recorded during W, SWS, and PS. During SWS, thalamic cells behaved as an homogeneous population: as compared with W, most of them (97/102 cells) exhibited decreased evoked spike rates. The frequency selectivity was enhanced and the RF size was reduced. In contrast during PS, two populations of cells were identified: one (32/53 cells) showed the same pattern of changes as during SWS, whereas the other (21/53 cells) expressed values of evoked spike rates and RF properties that did not significantly differ from those in W. These two populations were equally distributed in the different anatomical divisions of the auditory thalamus. Last, during both SWS and PS, the responses latency was longer and the acoustic threshold was higher than in W but the proportion of monotonic versus nonmonotonic rate-level functions was unchanged. During both SWS and PS, no relationship was found between the changes in burst percentage and the changes of the RF properties. These results point out the dual aspect of sensory processing during sleep. On the one hand, they show that the auditory messages sent by thalamic cells to cortical neurons are reduced both in terms of firing rate at a given frequency and in terms of frequency range. On the other hand, the fact that the frequency selectivity and the rate-level function are preserved suggests that the messages sent to cortical cells are not deprived of informative content, and that the analysis of complex acoustic sounds should remain possible. This can explain why, although attenuated, reactivity to biologically relevant stimuli is possible during sleep.


2012 ◽  
Vol 132 (10) ◽  
pp. 838-843 ◽  
Author(s):  
Nobuaki Kikuchi ◽  
Yoshihiro Suyama ◽  
Satoshi Okamoto ◽  
Osamu Kitakami

2013 ◽  
Vol 58 (3) ◽  
pp. 370-374 ◽  
Author(s):  
A. M. Boichenko ◽  
V. F. Tarasenko ◽  
E. Kh. Baksht ◽  
A. G. Burachenko ◽  
M. V. Erofeev ◽  
...  

2000 ◽  
Vol 84 (3) ◽  
pp. 1453-1463 ◽  
Author(s):  
Jos J. Eggermont

Responses of single- and multi-units in primary auditory cortex were recorded for gap-in-noise stimuli for different durations of the leading noise burst. Both firing rate and inter-spike interval representations were evaluated. The minimum detectable gap decreased in exponential fashion with the duration of the leading burst to reach an asymptote for durations of 100 ms. Despite the fact that leading and trailing noise bursts had the same frequency content, the dependence on leading burst duration was correlated with psychophysical estimates of across frequency channel (different frequency content of leading and trailing burst) gap thresholds in humans. The duration of the leading burst plus that of the gap was represented in the all-order inter-spike interval histograms for cortical neurons. The recovery functions for cortical neurons could be modeled on basis of fast synaptic depression and after-hyperpolarization produced by the onset response to the leading noise burst. This suggests that the minimum gap representation in the firing pattern of neurons in primary auditory cortex, and minimum gap detection in behavioral tasks is largely determined by properties intrinsic to those, or potentially subcortical, cells.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jennifer Resnik ◽  
Daniel B Polley

Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons. Whereas the status of brainstem-evoked potentials did not predict the recovery of sensory responses to surviving nerve fibers, homeostatic adjustments in PV-mediated inhibition during the first days following injury could predict the eventual recovery of cortical sound processing weeks later. These findings underscore the potential importance of self-regulated inhibitory dynamics for the restoration of sensory processing in excitatory neurons following peripheral nerve injuries.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wenlu Pan ◽  
Jing Pan ◽  
Yan Zhao ◽  
Hongzheng Zhang ◽  
Jie Tang

Serotonin transporter (SERT) modulates the level of 5-HT and significantly affects the activity of serotonergic neurons in the central nervous system. The manipulation of SERT has lasting neurobiological and behavioral consequences, including developmental dysfunction, depression, and anxiety. Auditory disorders have been widely reported as the adverse events of these mental diseases. It is unclear how SERT impacts neuronal connections/interactions and what mechanism(s) may elicit the disruption of normal neural network functions in auditory cortex. In the present study, we report on the neuronal morphology and function of auditory cortex in SERT knockout (KO) mice. We show that the dendritic length of the fourth layer (L-IV) pyramidal neurons and the second-to-third layer (L-II/III) interneurons were reduced in the auditory cortex of the SERT KO mice. The number and density of dendritic spines of these neurons were significantly less than those of wild-type neurons. Also, the frequency-tonotopic organization of primary auditory cortex was disrupted in SERT KO mice. The auditory neurons of SERT KO mice exhibited border frequency tuning with high-intensity thresholds. These findings indicate that SERT plays a key role in development and functional maintenance of auditory cortical neurons. Auditory function should be examined when SERT is selected as a target in the treatment for psychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document