Electrophysiology of the mammillary complex in vitro. II. Medial mammillary neurons

1992 ◽  
Vol 68 (4) ◽  
pp. 1321-1331 ◽  
Author(s):  
A. Alonso ◽  
R. R. Llinas

1. The electrophysiological properties of guinea pig medial mammillary body (MMB) neurons were studied using an in vitro slice preparation. 2. The neurons (n = 80) had an average resting potential of -57 +/- 5.5 (SD) mV, an input resistance of 176 +/- 83 M omega, and a spike amplitude of 58 +/- 15.7 mV. Most of the neurons were silent at rest (n = 52), but some fired spontaneous single spikes (n = 16) or spike bursts (n = 14). 3. The main electrophysiological characteristic of MMB neurons was the ability to generate Ca(2+)-dependent regenerative events, which resulted in very robust burst responses. However, this regenerative event was not the same for all neurons, ranging from typical low-threshold Ca2+ spikes (LTSs) to intermediate-threshold plateau potentials (ITPs). 4. The ITPs were distinct from the LTSs in that they lasted > or = 100 ms and were not inactivated at membrane potentials at or positive to -55 mV. 5. Some cells with a prominent ITP and no LTS (n = 36) displayed repetitive, usually rhythmic, bursting (n = 14). This ITP could be powerful enough to maintain rhythmic membrane potential oscillations after pharmacological block of Na+ conductances. 6. A group of 32 MMB neurons displayed complex bursting that was generated by activation of both LTSs and ITPs. This was established on the basis of their distinct time- and voltage-dependent characteristics. In a group of neurons (n = 14), the burst responses were exclusively generated by an LTS; however, a Ca(2+)-dependent plateau potential contributed to the generation of rebound-triggered oscillatory firing. 7. In addition to the Ca(2+)-dependent LTS and/or ITP, MMB neurons always displayed high-threshold Ca2+ spikes after reduction of K+ conductances with tetraethylammonium. 8. MMB neurons display one of the richer varieties of voltage-dependent Ca2+ conductances so far encountered in mammalian CNS. We propose that the very prominent endogenous bursting and oscillatory properties of MB neurons allow this nuclear complex to function as an oscillatory relay for the transmission of low-frequency rhythmic activities throughout the limbic circuit.

1989 ◽  
Vol 143 (1) ◽  
pp. 419-434
Author(s):  
B. A. Bannatyne ◽  
S. E. Blackshaw ◽  
M. McGregor

1. New growth in cutaneous mechanosensory neurones elicited by axotomy or axon crush was studied using intracellular injection of horseradish peroxidase at different times after the lesion, ranging from a few days to over a year. 2. Cutting or crushing major, large-calibre axon branches of mechanosensory neurones elicits sprouting of new processes, either centrally within the ganglion neuropile or at the site of the lesion in the peripheral nerve. In contrast, cutting or crushing fine-calibre axon branches supplying accessory parts of the receptive field does not elicit sprouting of the main arbor or main axon branches. 3. Different modalities of mechanosensory neurone respond differently to lesions of their axons. Cutting the axons of high-threshold units responding to noxious stimulation of the skin elicits sprouting of additional processes from the axon hillock region within the central nervous system (CNS), whereas cutting or crushing the axons of low-threshold cells responding to light touch of the skin elicits sprouting at the site of the lesion only, and not within the CNS. 4. In addition to the new growth directed into the peripheral nerve, damaged nociceptive neurones also form new processes that wrap the somata of particular cells within the ganglion. 5. Sprouted processes of axotomized neurones are retained for long periods after the lesion (up to 425 days). 6. The electrical properties of touch and nociceptive cells were studied between 1 and 60 days after axotomy, by intracellular recording from the centrally located cell bodies. The amplitude, width and maximum dV/dt of the action potential and after-hyperpolarization, as well as the resting potential and input resistance, did not change significantly after axotomy, despite the considerable process sprouting known to occur during this time.


1993 ◽  
Vol 70 (3) ◽  
pp. 1244-1248 ◽  
Author(s):  
D. Mattia ◽  
G. G. Hwa ◽  
M. Avoli

1. Conventional intracellular recordings were performed in rat hippocampal slices to investigate the electrophysiological properties of subicular neurons. These cells had a resting membrane potential (RMP) of -66 +/- 7.2 mV (mean +/- SD; n = 50), input resistance of 23.6 +/- 8.2 M omega (n = 51), time constant of 7.1 +/- 1.9 ms (n = 51), action potential amplitude of 85.8 +/- 13.8 mV (n = 50), and duration of 2.9 +/- 1.2 ms (n = 48). Analysis of the current-voltage relationship revealed membrane inward rectification in both depolarizing and hyperpolarizing direction. The latter type was readily abolished by Cs+ (3 mM; n = 6 cells). 2. Injection of depolarizing current pulses of threshold intensity induced in all subicular neurons (n = 51) recorded at RMP a burst of two to three fast action potentials (frequency = 212.7 +/- 90 Hz, n = 13 cells). This burst rode on a slow depolarizing envelope and was followed by an afterhyperpolarization and later by regular spiking mode once the pulse was prolonged. Similar bursts were also generated upon termination of a hyperpolarizing current pulse. 3. The slow depolarization underlying the burst resembled a low-threshold response, which in thalamic cells is caused by a Ca2+ conductance and is contributed by the Cs(+)-sensitive inward rectifier. However, bursts in subicular cells persisted in medium containing the Ca(2+)-channel blockers Co2+ (2 mM) and Cd2+ (1 mM) (n = 5 cells) but disappeared during application of TTX (1 microM; n = 3 cells). Hence they were mediated by Na+. Blockade of the hyperpolarizing inward rectification by Cs+ did not prevent the rebound response (n = 3 cells). 4. Our findings demonstrate that intrinsic bursts, presumably related to a "low-threshold" Na+ conductance are present in rat subicular neurons. Similar intrinsic characteristics have been suggested to underlie the rhythmic activity described in other neuronal networks, although in most cases the low-threshold electrogenesis was caused by Ca2+. We propose that the bursting mechanism might play a role in modulating incoming signals from the classical hippocampal circuit within the limbic system.


1994 ◽  
Vol 71 (2) ◽  
pp. 583-594 ◽  
Author(s):  
B. Hutcheon ◽  
R. M. Miura ◽  
Y. Yarom ◽  
E. Puil

1. We constructed a mathematical model of the subthreshold electrical behavior of neurons in the nucleus mediodorsalis thalami (MDT) to elucidate the basis of a Ni(2+)-sensitive low-frequency (2-4 Hz) resonance found previously in these neurons. 2. A model that included the low- and high-threshold Ca2+ currents (IT and IL), a Ca(2+)-activated K+ current (IC), a rapidly inactivating K+ current (IA), a voltage-dependent K+ current which we call IKx, and a voltage-independent leak current (Il), successfully simulated the low-threshold spike observed in MDT neurons. This model (the MDT model) and a minimal version of the model containing only IT and I1 (the minimal MDT model) were used in the analysis. 3. An impedance function was derived for a linearized version of the MDT model. This showed that the model predicts a low-frequency (2-4 Hz) resonance in the voltage response to "small" oscillatory current inputs (producing voltage changes of < 10 mV) when the membrane potential is between -60 and -85 mV. 4. Further examination of the impedances for the MDT and minimal MDT models shows that IT underlies the frequency- and voltage-dependent resonance. The slow inactivation of IT results in an attenuation of voltage responses to low frequencies, resulting in a band-pass behavior. The fast activation of IT amplifies the resonance and modulates the peak frequency but does not, in itself, cause resonance. 5. When voltage responses are small (< 10 mV), the strength and voltage-dependence of resonance of the minimal MDT model are determined by the steady-state window conductance, gw, due to IT. This steady-state conductance arises where the steady-state activation, m(infinity2)(V), and inactivation, h(infinity) (V), curves overlap. Parallel shifts in the inactivation curve can eliminate or enhance resonance with little effect on the IT-dependent low-threshold spike evoked after hyperpolarizing current pulses. When the peak magnitude of gw was large, the minimal MDT model showed spontaneous oscillations at 3 Hz with amplitudes > 30 mV. 6. Large oscillatory current inputs evoked significantly nonlinear voltage responses in the minimal MDT model, but the 2- to 4-Hz frequency selectivity (predicted from the linearized impedance) remained. 7. We conclude that the properties of the low-threshold Ca2+ current, IT, are sufficient to explain the Ni(2+)-sensitive 2- to 4-Hz resonance seen in MDT neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hugues Berry ◽  
Stéphane Genet

AbstractThe neurons of the deep cerebellar nuclei (DCNn) represent the main functional link between the cerebellar cortex and the rest of the central nervous system. Therefore, understanding the electrophysiological properties of DCNn is of fundamental importance to understand the overall functioning of the cerebellum. Experimental data suggest that DCNn can reversibly switch between two states: the firing of spikes (F state) and a stable depolarized state (SD state). We introduce a new biophysical model of the DCNn membrane electro-responsiveness to investigate how the interplay between the documented conductances identified in DCNn give rise to these states. In the model, the F state emerges as an isola of limit cycles, i.e. a closed loop of periodic solutions disconnected from the branch of SD fixed points. This bifurcation structure endows the model with the ability to reproduce the $\text{F}\to \text{SD}$ F → SD transition triggered by hyperpolarizing current pulses. The model also reproduces the $\text{F}\to \text{SD}$ F → SD transition induced by blocking Ca currents and ascribes this transition to the blocking of the high-threshold Ca current. The model suggests that intracellular current injections can trigger fully reversible $\text{F}\leftrightarrow \text{SD}$ F ↔ SD transitions. Investigation of low-dimension reduced models suggests that the voltage-dependent Na current is prominent for these dynamical features. Finally, simulations of the model suggest that physiological synaptic inputs may trigger $\text{F}\leftrightarrow \text{SD}$ F ↔ SD transitions. These transitions could explain the puzzling observation of positively correlated activities of connected Purkinje cells and DCNn despite the former inhibit the latter.


1990 ◽  
Vol 259 (3) ◽  
pp. C402-C408 ◽  
Author(s):  
E. P. Burke ◽  
K. M. Sanders

Previous studies have suggested that the membrane potential gradient across the circular muscle layer of the canine proximal colon is due to a gradient in the contribution of the Na(+)-K(+)-ATPase. Cells at the submucosal border generate approximately 35 mV of pump potential, whereas at the myenteric border the pump contributes very little to resting potential. Results from experiments in intact muscles in which the pump is blocked are somewhat difficult to interpret because of possible effects of pump inhibitors on membrane conductances. Therefore, we studied isolated colonic myocytes to test the effects of ouabain on passive membrane properties and voltage-dependent currents. Ouabain (10(-5) M) depolarized cells and decreased input resistance from 0.487 +/- 0.060 to 0.292 +/- 0.040 G omega. The decrease in resistance was attributed to an increase in K+ conductance. Studies were also performed to measure the ouabain-dependent current. At 37 degrees C, in cells dialyzed with 19 mM intracellular Na+ concentration [( Na+]i), ouabain caused an inward current averaging 71.06 +/- 7.49 pA, which was attributed to blockade of pump current. At 24 degrees C or in cells dialyzed with low [Na+]i (11 mM), ouabain caused little change in holding current. With the input resistance of colonic cells, pump current appears capable of generating at least 35 mV. Thus an electrogenic Na+ pump could contribute significantly to membrane potential.


1997 ◽  
Vol 78 (5) ◽  
pp. 2235-2245 ◽  
Author(s):  
Xiao Wen Fu ◽  
Borys L. Brezden ◽  
Shu Hui Wu

Fu, Xiao Wen, Borys L. Brezden, and Shu Hui Wu. Hyperpolarization-activated inward current in neurons of the rat's dorsal nucleus of the lateral lemniscus in vitro. J. Neurophysiol. 78: 2235–2245, 1997. The hyperpolarization-activated current ( I h) underlying inward rectification in neurons of the rat's dorsal nucleus of the lateral lemniscus (DNLL) was investigated using whole cell patch-clamp techniques. Patch recordings were made from DNLL neurons of young rats (21–30 days old) in 400 μm tissue slices. Under current clamp, injection of negative current produced a graded hyperpolarization of the cell membrane, often with a gradual sag in the membrane potential toward the resting value. The rate and magnitude of the sag depended on the amount of hyperpolarizing current. Larger current resulted in a larger and faster decay of the voltage. Under voltage clamp, hyperpolarizing voltage steps elicited a slowly activating inward current that was presumably responsible for the sag observed in the voltage response to a steady hyperpolarizing current recorded under current clamp. Activation of the inward current ( I h) was voltage and time dependent. The current just was seen at a membrane potential of −70 mV and was activated fully at −140 mV. The voltage value of half-maximal activation of I h was −78.0 ± 6.0 (SE) mV. The rate of I h activation was best approximated by a single exponential function with a time constant that was voltage dependent, ranging from 276 ± 27 ms at −100 mV to 186 ± 11 ms at −140 mV. Reversal potential ( E h) of I h current was more positive than the resting potential. Raising the extracellular potassium concentration shifted E h to a more depolarized value, whereas lowering the extracellular sodium concentration shifted E h in a more negative direction. I h was sensitive to extracellular cesium but relatively insensitive to extracellular barium. The current amplitude near maximal-activation (about −140 mV) was reduced to 40% of control by 1 mM cesium but was reduced to only 71% of control by 2 mM barium. When the membrane potential was near the resting potential (about −60 mV), cesium had no effect on the membrane potential, current-evoked firing rate and input resistance but reduced the spontaneous firing. When the membrane potential was more negative than −70 mV, cesium hyperpolarized the cell, decreased current-evoked firing and increased the input resistance. I h in DNLL neurons does not contribute to the normal resting potential but may enhance the extent of excitation, thereby making the DNLL a consistently powerful inhibitory source to upper levels of the auditory system.


1982 ◽  
Vol 48 (6) ◽  
pp. 1321-1335 ◽  
Author(s):  
M. J. Gutnick ◽  
B. W. Connors ◽  
D. A. Prince

1. The cellular mechanisms underlying interictal epileptogenesis have been examined in an in vitro slice preparation of guinea pig neocortex. Penicillin or bicuculline was applied to the tissue, and intracellular recordings were obtained from neurons and glia. 2. Following convulsant application, stimulation could elicit a short-latency excitatory postsynaptic potential (EPSP) and a large, longer latency depolarization shift (DS) in single neurons. DSs in neurons of the slice were very similar to those evoked in neurons of neocortex in vivo in that they displayed an all-or-none character, large shifts in latency during repetitive stimuli, long afterpotentials, and a prolonged refractory period. In contrast to epileptogenesis produced by penicillin in intact cortex, neither spontaneous DSs nor ictal episodes were observed in neocortical slices. 3. In simultaneous recordings from pairs of neurons within the same cortical column, DS generation and latency shifts were invariably synchronous. DS generation in neurons was also coincident with large, paroxysmal increases of extracellular [K+], as indicated by simultaneous recordings from glia. 4. When polarizing currents were applied to neurons injected with the local anesthetic QX-314, the DS amplitude varied monotonically and had an extrapolated reversal potential near 0 mV. In neurons injected with the K+-current blocker Cs+, large displacements of membrane potential were possible, and both the short-latency EPSP and the peak of the DS diminished completely at about 0 mV. At potentials positive to this, the short-latency EPSP was reversed, and the DS was replaced by a paroxysmal hyperpolarization whose rise time and peak latency were prolonged compared to the DS evoked at resting potential. The paroxysmal hyperpolarization probably represents the prolonged activation of the impaled neuron by EPSPs. 5. Voltage-dependent components, including slow spikes, appeared to contribute to generation of the DS at resting potential in Cs+-filled cells, and these components were blocked during large depolarizations. 6. The results suggest that DS generation in single neocortical neurons occurs during synchronous synaptic activation of a large group of cells. DS onset in a given neuron is determined by the timing of a variable-latency excitatory input that differs from the short-latency EPSP. The DS slow envelope appears to be generated by long-duration excitatory synaptic currents and may be modulated by intrinsic voltage-dependent membrane conductances. 7. We present a hypothesis for the initiation of the DS, based on the anatomical and physiological organization of the intrinsic neocortical circuits.


2001 ◽  
Vol 149 (23) ◽  
pp. 707-711 ◽  
Author(s):  
N. P. H. Hudson ◽  
I. G. Mayhew ◽  
G. T. Pearson

Intracellular microelectrode recordings were made from smooth muscle cells in cross-sectional preparations of equine ileum, superfused in vitro. Membrane potential oscillations and spike potentials were recorded in all preparations, but recordings were made more readily from cells in the longitudinal muscle layer than from cells in the circular layer. The mean (se) resting membrane potential (RMP) of smooth muscle cells in the longitudinal muscle layer was -51.9 (1.2) mV, and the membrane potential oscillations in this layer had a mean amplitude of 4.8 (0.4) mV, a frequency of 9.0 (0.1) cycles per minute and a duration of 5.8 (0.2) seconds. The membrane potential oscillations were preserved in the presence of tetrodotoxin. A waxing and waning pattern of membrane potential oscillation activity was observed. Nifedipine abolished the spiking contractile activity of the smooth muscle, did not abolish the membrane potential oscillations but did alter their temporal characteristics.


1989 ◽  
Vol 62 (1) ◽  
pp. 59-69 ◽  
Author(s):  
J. T. Buchanan ◽  
S. Grillner ◽  
S. Cullheim ◽  
M. Risling

1. In the in vitro preparation of the lamprey spinal cord, paired intracellular recordings of membrane potential were used to identify interneurons producing excitatory postsynaptic potentials (EPSPs) on myotomal motoneurons. 2. Seventy-nine interneurons (8.4% of all neuron-motoneuron pairs tested) elicited unitary EPSPs that followed one-for-one at short, constant latencies and were therefore considered monosynaptic according to conventional criteria. Evidence was obtained for selectivity and divergence of excitatory interneuron (EIN) outputs and for convergence of EIN input to motoneurons. 3. The neurotransmitter released by EINs may be an excitatory amino acid such as glutamate, because the EPSPs were depressed by antagonists of excitatory amino acids. 4. Intracellular dye injection revealed that EINs have small cell bodies (average 11 x 27 microns), transversely oriented dendrites, and thin (less than 3 microns) slowly conducting axons (0.7 m/s) that project caudally and ipsilaterally. One EIN exhibited a system of thin multi-branching axon collaterals with periodic swellings. Ultrastructurally, these swellings contained clear spherical vesicles, and they apposed postsynaptic membrane specializations. 5. During fictive locomotion, the membrane-potential oscillations of EINs were greater in amplitude than, but similar in shape and timing to, those of their postsynaptic motoneurons. EINs fired action potentials during fictive locomotion and contributed to the depolarization of motoneurons. 6. These interneurons are proposed to be a source of excitation to motoneurons and interneurons in the lamprey spinal cord, participating in motor activity including locomotion.


2008 ◽  
Vol 100 (5) ◽  
pp. 2746-2756 ◽  
Author(s):  
Stephen D. Glasgow ◽  
C. Andrew Chapman

Ionic conductances that generate membrane potential oscillations in neurons of layer II of the parasubiculum were studied using whole cell current-clamp recordings in horizontal slices from the rat brain. Blockade of ionotropic glutamate and GABA synaptic transmission did not reduce the power of the oscillations, indicating that oscillations are not dependent on synaptic inputs. Oscillations were eliminated when cells were hyperpolarized 6–10 mV below spike threshold, indicating that they are mediated by voltage-dependent conductances. Application of TTX completely eliminated oscillations, suggesting that Na+ currents are required for the generation of the oscillations. Oscillations were not reduced by blocking Ca2+ currents with Cd2+ or Ca2+-free artificial cerebrospinal fluid, or by blocking K+ conductances with either 50 μM or 5 mM 4-aminopyridine (4-AP), 30 mM tetraethylammonium (TEA), or Ba2+(1–2 mM). Oscillations also persisted during blockade of the muscarinic-dependent K+ current, IM, using the selective antagonist XE-991 (10 μM). However, oscillations were significantly attenuated by blocking the hyperpolarization-activated cationic current Ih with Cs+ and were almost completely blocked by the more potent Ih blocker ZD7288 (100 μM). Intrinsic membrane potential oscillations in neurons of layer II of the parasubiculum are therefore likely driven by an interaction between an inward persistent Na+ current and time-dependent deactivation of Ih. These voltage-dependent conductances provide a mechanism for the generation of membrane potential oscillations that can help support rhythmic network activity within the parasubiculum during theta-related behaviors.


Sign in / Sign up

Export Citation Format

Share Document