Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro

1992 ◽  
Vol 68 (5) ◽  
pp. 1746-1759 ◽  
Author(s):  
S. P. Schneider

1. The functional organization of interneurons in spinal laminae III-V was studied in an isolated preparation of hamster dorsal horn with sensory innervation from an excised skin patch. Morphological details of 40 neurons were visualized by intracellular injection of horseradish peroxidase. Active and passive membrane properties, synaptic responses to cutaneous nerve volleys, and responses to innocuous mechanical stimuli were determined for 25 cells with identified axons. 2. Neurons were classified into two types: 1) cells with local axons, branching in proximity to the cell soma and dendrites, that produced numerous synaptic boutons (740 +/- 504/axon; mean +/- SD), often arranged in clusters and 2) neurons with deep axons that usually bifurcated into rostral and caudal daughter branches up to 2.5 mm long, giving off collaterals ventral to the cell body and dendrites and forming significantly fewer boutons (155 +/- 140/axon) than local axon cells. A majority of boutons of local axon and deep axon cells, 89 and 83%, respectively, were of the en passant type. 3. Dendritic trees of local axon cells were relatively compact dorsoventrally (119 +/- 42 microns) and mediolaterally (128 +/- 45 microns), but were elongated rostrocaudally (404 +/- 121 microns). In comparison, dendritic trees of deep axon cells radiated significantly farther dorsoventrally (218 +/- 88 microns) and mediolaterally (180 +/- 34 microns), but exhibited comparable rostrocaudal spread (413 +/- 128 microns). There was no correlation between dorsoventral and mediolateral dendritic spread and mediolateral soma location for either cell type. However, for medially situated deep axon cells the rostrocaudal dendritic spread was up to 180% greater than for those located laterally. For nearly one-half of all cells (49%; 17/35) dendritic processes extended dorsally into lamina II. 4. Local axon cells had resting membrane potentials that were more negative than deep axon cells (-59.5 +/- 6.1 and -53.6 +/- 4.7 mV, respectively), but the amplitude and duration of action potentials generated by the two types were similar. Neuronal input resistance (RN) and membrane time constant (tau m) varied widely from cell to cell, but were not significantly different for local axon (77.4 +/- 46.8 M omega, 13.4 +/- 9.5 ms) and deep axon cells (46.5 +/- 19.2 M omega, 6.6 +/- 3.0 ms). 5. Volleys in myelinated afferent fibers activated fast rising excitatory postsynaptic potentials (EPSPs) that exhibited later, more slowly rising potentials with multiple components in a majority of deep axon (89%) and local axon (72%) neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

2003 ◽  
Vol 90 (1) ◽  
pp. 405-414 ◽  
Author(s):  
Regula E. Egli ◽  
Danny G. Winder

The bed nucleus of the stria terminalis (BNST) is a structure uniquely positioned to integrate stress information and regulate both stress and reward systems. Consistent with this arrangement, evidence suggests that the BNST, and in particular the noradrenergic input to this structure, is a key component of affective responses to drugs of abuse. We have utilized an in vitro slice preparation from adult mice to determine synaptic and membrane properties of these cells, focusing on the dorsal and ventral subdivisions of the anterolateral BNST (dBNST and vBNST) because of the differential noradrenergic input to these two regions. We find that while resting membrane potential and input resistance are comparable between these subdivisions, excitable properties, including a low-threshold spike (LTS) likely mediated by T-type calcium channels and an Ih-dependent potential, are differentially distributed. Inhibitory and excitatory postsynaptic potentials (IPSPs and EPSPs, respectively) are readily evoked in both dBNST and vBNST. The fast IPSP is predominantly GABAA-receptor mediated and is partially blocked by the AMPA/kainate-receptor antagonist CNQX. In the presence of the GABAA-receptor antagonist picrotoxin, cells in dBNST but not vBNST are more depolarized and have a higher input resistance, suggesting tonic GABAergic inhibition of these cells. The EPSPs elicited in BNST are monosynaptic, exhibit paired pulse facilitation, and contain both an AMPA- and an N-methyl-d-aspartate (NMDA) receptor-mediated component. These data support the hypothesis that neurons of the dorsal and ventral BNST differentially integrate synaptic input, which is likely of behavioral significance. The data also suggest mechanisms by which information may flow through stress and reward circuits.


2002 ◽  
Vol 87 (5) ◽  
pp. 2398-2407 ◽  
Author(s):  
Carmen Cabanes ◽  
Mikel López de Armentia ◽  
Félix Viana ◽  
Carlos Belmonte

Intracellular recordings from neurons in the mouse trigeminal ganglion (TG) in vitro were used to characterize changes in membrane properties that take place from early postnatal stages (P0–P7) to adulthood (>P21). All neonatal TG neurons had uniformly slow conduction velocities, whereas adult neurons could be separated according to their conduction velocity into Aδ and C neurons. Based on the presence or absence of a marked inflection or hump in the repolarization phase of the action potential (AP), neonatal neurons were divided into S- (slow) and F-type (fast) neurons. Their passive and subthreshold properties (resting membrane potential, input resistance, membrane capacitance, and inward rectification) were nearly identical, but they showed marked differences in AP amplitude, AP overshoot, AP duration, rate of AP depolarization, rate of AP repolarization, and afterhyperpolarization (AHP) duration. Adult TG neurons also segregated into S- and F-type groups. Differences in their mean AP amplitude, AP overshoot, AP duration, rate of AP depolarization, rate of AP repolarization, and AHP duration were also prominent. In addition, axons of 90% of F-type neurons and 60% of S-type neurons became faster conducting in their central and peripheral branch, suggestive of axonal myelination. The proportion of S- and F-type neurons did not vary during postnatal development, suggesting that these phenotypes were established early in development. Membrane properties of both types of TG neurons evolved differently during postnatal development. The nature of many of these changes was linked to the process of myelination. Thus myelination was accompanied by a decrease in AP duration, input resistance ( R in), and increase in membrane capacitance (C). These properties remained constant in unmyelinated neurons (both F- and S-type). In adult TG, all F-type neurons with inward rectification were also fast-conducting Aδ, suggesting that those F-type neurons showing inward rectification at birth will evolve to F-type Aδ neurons with age. The percentage of F-type neurons showing inward rectification also increased with age. Both F- and S-type neurons displayed changes in the sensitivity of the AP to reductions in extracellular Ca2+ or substitution with Co2+ during the process of maturation.


1999 ◽  
Vol 16 (3) ◽  
pp. 557-570 ◽  
Author(s):  
HONGJING TAN ◽  
RICHARD D. MOONEY ◽  
ROBERT W. RHOADES

Intracellular recording techniques were used to evaluate the effects of norepinephrine (NE) on the membrane properties of superficial layer (stratum griseum superficiale and stratum opticum) superior colliculus (SC) cells. Of the 207 cells tested, 44.4% (N = 92) were hyperpolarized by ≥3 mV and 8.7% (N = 18) were depolarized by ≥3 mV by application of NE. Hyperpolarization induced by NE was dose dependent (EC50 = 8.1 μM) and was associated with decreased input resistance and outward current which had a reversal potential of −94.0 mV. Depolarization was associated with a very slight rise in input resistance and had a reversal potential of −93.1 mV for the single cell tested. Pharmacologic experiments demonstrated that isoproterenol, dobutamine, and p-aminoclonidine all hyperpolarized SC cells. These results are consistent with the conclusion that NE-induced hyperpolarization of SC cells is mediated by both α2 and β1 adrenoceptors. The α1 adrenoceptor agonists, methoxamine and phenylephrine, depolarized 35% (6 of 17) of the SC cells tested by ≥3 mV. Most of the SC cells tested exhibited responses indicative of expression of more than one adrenoceptor. Application of p-aminoclonidine or dobutamine inhibited transsynaptic responses in SC cells evoked by electrical stimulation of optic tract axons. Inhibition of evoked responses by these agents was usually, but not invariably, associated with a hyperpolarization of the cell membrane and a reduction in depolarizing potentials evoked by application of glutamate. The present in vitro results are consistent with those of the companion in vivo study which suggested that NE-induced response suppression in superficial layer SC neurons was primarily postsynaptic and chiefly mediated by both α2 and β1 adrenoceptors.


1991 ◽  
Vol 157 (1) ◽  
pp. 101-122
Author(s):  
WERNER A. WUTTKE ◽  
MICHAEL S. BERRY

1. The giant salivary cells of Haementeria ghilianii are known to produce Ca2+-dependent action potentials and to release their secretory products in response to stimulation of the stomatogastric nerve. In this study, the electrophysiological effects of some putative transmitters were examined by perfusion of the gland and two promising candidates were selected for detailed analysis. 2. Acetylcholine (ACh) was the only substance tested which excited the gland cells. It produced a large, Na+-dependent depolarization that elicited 1–3 action potentials and desensitized to about 24% of its maximal value within 2 min. 3. Carbachol, tetramethylammonium and nicotine elicited similar responses to ACh, whereas choline and pilocarpine had negligible effects. 4. The ACh response was completely blocked by d-tubocurarine and strychnine, and was reduced by tetraethylammonium, hexamethonium and atropine. The receptors, therefore, cannot be clearly distinguished as nicotinic or muscarinic. 5. ACh did not elicit secretion, but this does not necessarily preclude it from acting as a neuroglandular transmitter. 6. 5-Hydroxytryptamine (5-HT) was the only transmitter candidate that elicited secretion, though it did not excite the gland cells. 7. 5-HT produced a subthreshold depolarization and an increase in input resistance. Action potentials, elicited by depolarizing pulses, were increased in amplitude and duration, and showed greatly reduced adaptation. 8. 5-HT potentiated the net inward current, evoked by subthreshold depolarizing pulses, by reducing outward K+ current. The inward current, carried by Ca2+, was not directly affected. In addition, 5-HT increased an inwardly rectifying current, carried by Na+ and K+. All the effects of 5-HT tended to increase cell excitability. 9. Salivary cell responses to 5-HT were reversibly antagonised by methysergide. 10. Responses to ACh or 5-HT were not mimicked by 3′, 5′-cyclic guanosine monophosphate, which greatly reduced spike amplitude and excitability. The effects were specific to the 3′, 5′ form; 2′, 3′-cyclic GMP had no effect. Cyclic GMP dramatically reduced the duration of action potentials that had been artificially prolonged by TEA+ or removal of external Ca2+. 11. Cyclic 3′, 5′-adenosine monophosphate and its dibutyryl derivative had little effect on membrane properties. 8-Bromo-cyclic AMP, however, mimicked all the effects of 5-HT. It is thought that 5-HT may exert its actions via cyclic AMP. 12. The possible role of 5-HT in salivary secretion is discussed.


2001 ◽  
Vol 281 (5) ◽  
pp. R1474-R1482 ◽  
Author(s):  
F. M. Smith ◽  
A. S. McGuirt ◽  
J. Leger ◽  
J. A. Armour ◽  
J. L. Ardell

Although intrinsic cardiac neurons display ongoing activity after chronic interruption of extrinsic autonomic inputs to the heart, the effects of decentralization on individual neurons remain unknown. The objective of this study was to determine the effects of chronic (3–4 wk) surgical decentralization on intracellular properties of, and neurotransmission among, neurons contained within the canine intrinsic right atrial ganglionated plexus in vitro. Properties of neurons from decentralized hearts were compared with those of neurons from sham-operated hearts (controls). Two populations of neurons were identified by their firing behavior in response to intracellular current injection. Fifty-nine percent of control neurons and 72% of decentralized neurons were phasic (discharged one action potential on excitation). Forty-one percent of control neurons and 27% of decentralized neurons were accommodating (multiple discharge with decrementing frequency). After chronic decentralization, input resistance of phasic neurons increased, whereas the duration of afterhyperpolarization of accommodating neurons decreased. Postsynaptic responses to interganglionic nerve stimulation were evoked in 89% of control neurons and 83% of decentralized neurons; the majority of these responses involved nicotinic receptors. These results show that, after chronic decentralization, intrinsic cardiac neurons 1) undergo changes in membrane properties that may lead to increased excitability while 2) maintaining synaptic neurotransmission within the intrinsic cardiac ganglionated plexus.


1993 ◽  
Vol 70 (3) ◽  
pp. 1244-1248 ◽  
Author(s):  
D. Mattia ◽  
G. G. Hwa ◽  
M. Avoli

1. Conventional intracellular recordings were performed in rat hippocampal slices to investigate the electrophysiological properties of subicular neurons. These cells had a resting membrane potential (RMP) of -66 +/- 7.2 mV (mean +/- SD; n = 50), input resistance of 23.6 +/- 8.2 M omega (n = 51), time constant of 7.1 +/- 1.9 ms (n = 51), action potential amplitude of 85.8 +/- 13.8 mV (n = 50), and duration of 2.9 +/- 1.2 ms (n = 48). Analysis of the current-voltage relationship revealed membrane inward rectification in both depolarizing and hyperpolarizing direction. The latter type was readily abolished by Cs+ (3 mM; n = 6 cells). 2. Injection of depolarizing current pulses of threshold intensity induced in all subicular neurons (n = 51) recorded at RMP a burst of two to three fast action potentials (frequency = 212.7 +/- 90 Hz, n = 13 cells). This burst rode on a slow depolarizing envelope and was followed by an afterhyperpolarization and later by regular spiking mode once the pulse was prolonged. Similar bursts were also generated upon termination of a hyperpolarizing current pulse. 3. The slow depolarization underlying the burst resembled a low-threshold response, which in thalamic cells is caused by a Ca2+ conductance and is contributed by the Cs(+)-sensitive inward rectifier. However, bursts in subicular cells persisted in medium containing the Ca(2+)-channel blockers Co2+ (2 mM) and Cd2+ (1 mM) (n = 5 cells) but disappeared during application of TTX (1 microM; n = 3 cells). Hence they were mediated by Na+. Blockade of the hyperpolarizing inward rectification by Cs+ did not prevent the rebound response (n = 3 cells). 4. Our findings demonstrate that intrinsic bursts, presumably related to a "low-threshold" Na+ conductance are present in rat subicular neurons. Similar intrinsic characteristics have been suggested to underlie the rhythmic activity described in other neuronal networks, although in most cases the low-threshold electrogenesis was caused by Ca2+. We propose that the bursting mechanism might play a role in modulating incoming signals from the classical hippocampal circuit within the limbic system.


1996 ◽  
Vol 75 (1) ◽  
pp. 248-267 ◽  
Author(s):  
G. F. Tseng ◽  
D. A. Prince

1. The electrophysiological properties of rat corticospinal neurons (CSNs) were studied 3, 9, and 12 mo after axotomy in the cervical spinal cord, with the use of a combination of the in vitro neocortical slice technique, intracellular recordings, and a double-labeling method that allowed identification of CSNs studied in vitro. 2. CSNs retained the rhodamine-labeled microspheres employed as a retrograde marker and were functionally active in the longest survival group (1 yr). 3. The somatic area of axotomized CSNs became progressively smaller, a reduction that amounted to 37% for all cells at 1 yr. There were no obvious differences between normal and axotomized cells in terms of apical dendritic widths, numbers of apical dendritic branches, or basal dendritic arbors. Intracortical axonal arborizations of axotomized neurons were in general similar to those of normal CSNs in that most axons ended in layers V and VI with only occasional collaterals reaching supragranular layers. 4. Axotomized CSNs were grouped according to their spike firing patterns during depolarizing current pulses so that their electrophysiological behavior could be compared with that of regular spiking and adapting groups of normal CSNs. No significant differences were found in resting membrane potential, or spike parameters between axotomized neurons in any survival group and normal controls. Neurons surviving 1 yr after axotomy had a higher input resistance (RN) than normal CSNs. There was a reduction in the percentage of CSNs that generated prominent spike depolarizing afterpotentials in the axotomized group. 5. The steady-state relationship between spike frequency and applied current (f-I slope) became steeper over time and was significantly greater 9 mo after axotomy in regular spiking (RS) and adapting neurons than in normal CSNs in the same groups. The increase in steady-state f-I slope was in part related to increases in the RN of axotomized neurons. 6. There was a significant decrease in the generation of slow afterhyperpolarizations following trains of spikes in axotomized versus normal RS neurons, first detected at 3 mo and also present in 9 mo and 1 yr survival groups. 7. Biphasic inhibitory postsynaptic potentials (IPSPs) were evoked in only 1 of 11 axotomized neurons in the 3-mo group, 2 of 12 cells examined at 9 mo, and 3 of 15 neurons 1 yr after axotomy. The proportions of neurons generating IPSPs were significantly smaller than in comparable groups of control CSNs. As a consequence, longer duration evoked excitatory postsynaptic potentials were generated by axotomized CSNs. 8. Results show that axotomized CSNs undergo alterations in intrinsic membrane properties and inhibitory synaptic electrogenesis that would tend to make them more responsive to excitatory inputs.


2010 ◽  
Vol 103 (6) ◽  
pp. 3001-3016 ◽  
Author(s):  
Michael J. Pesavento ◽  
Cynthia D. Rittenhouse ◽  
David J. Pinto

Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.


1985 ◽  
Vol 249 (2) ◽  
pp. F272-F281 ◽  
Author(s):  
C. P. Buhrle ◽  
R. Nobiling ◽  
R. Taugner

Intracellular recordings were made in juxtaglomerular granulated (JG) cells and in vascular smooth muscle (VSM) cells in afferent arterioles of hydronephrotic mouse kidneys. Both cell types did not differ in their passive and active electrical membrane properties; membrane potential was about -58 mV, input resistance exceeded 400 M omega, and JG as well as VSM cells showed spontaneous depolarizations resembling excitatory junction potentials and active responses observed in smooth muscle cells of other blood vessels in various species. These depolarizations, attributed to spontaneous transmitter release from adrenergic terminals, were extremely polymorphous and quite frequent. Epinephrine, norepinephrine, phenylephrine, arginine vasopressin, and angiotensin II depolarized JG and VSM cells, but isoproterenol and orciprenaline had no effect. A hyperpolarizing action of catecholamines was never observed. It is suggested that, in this in vitro preparation, isoproterenol increases renin secretion by a mechanism independent of membrane potential changes. Depolarizations mediated by alpha-mimetic agents, arginine vasopressin, and angiotensin II, as well as by the junctional activity may inhibit renin secretion by an increased calcium influx into JG cells.


Sign in / Sign up

Export Citation Format

Share Document