Analysis of voltage-gated and synaptic conductances contributing to network excitability defects in the mutant mouse tottering

1994 ◽  
Vol 71 (1) ◽  
pp. 1-10 ◽  
Author(s):  
S. A. Helekar ◽  
J. L. Noebels

1. Intracellular current- and voltage-clamp recordings were carried out in CA3 pyramidal neurons from hippocampal slices of adult tg/tg mice and their coisogenic C57BL/6J (+/+) controls with the use of the single-electrode switch-clamp technique. The principal aim of this study was to investigate the mechanisms responsible for the tg gene-linked prolongation (mean 60%) of a giant synaptic response, the potassium-induced paroxysmal depolarizing shift (PDS) at depolarized membrane potentials (Vm -47 to -54 mV) during synchronous network bursting induced by 10 mM potassium ([K+]o). 2. To examine the role of intrinsic voltage-dependent conductances underlying the mutant PDS prolongation, neurons were voltage clamped by the use of microelectrodes filled with 100 mM QX-314 or QX-222 chloride (voltage-gated sodium channel blockers) and 2 M cesium sulphate (potassium channel blocker). The whole-cell currents active during the PDS showed a significantly prolonged duration (mean 34%) at depolarized Vms in tg/tg compared with +/+ cells, indicating that a defect in voltage-dependent conductances is unlikely to completely account for the mutant phenotype. 3. Bath application of 40 microM (DL)-2-aminophosphonovalerate (DL-APV) produced a 30% reduction in PDS duration in both genotypes but failed to significantly alter the tg gene-linked prolongation compared with the wild type. These data indicate that the mutant PDS abnormality does not result from a selective increase of the N-methyl-D-aspartate (NMDA) receptor-mediated excitatory synaptic component. 4. Blockade of gamma-aminobutyric acid-A (GABAA) transmission with picrotoxin (50 microM) or bicuculline (1–5 microM) completely eliminated the difference in PDS duration between the genotypes. Furthermore, although both GABAA receptor antagonists increased the mean PDS duration in +/+ neurons, they did not significantly alter it in tg/tg neurons. These findings are consistent with a reduction in GABAA receptor-mediated synaptic inhibition during bursting in the tg CA3 hippocampal network. 5. To test this hypothesis, bursting CA3 pyramidal neurons were loaded intracellularly with chloride by the use of KCl-filled microelectrodes to examine the effect of reversing the hyperpolarizing chloride-dependent GABAA receptor-mediated inhibitory postsynaptic component of the PDS. Chloride loading prolonged PDS duration in both genotypes, but the increase was greater in +/+ than in tg/tg neurons, indicating that a smaller GABAA inhibitory postsynaptic potential (IPSP) component was reversed in the mutant.(ABSTRACT TRUNCATED AT 400 WORDS)

1996 ◽  
Vol 75 (6) ◽  
pp. 2354-2360 ◽  
Author(s):  
P. Paalasmaa ◽  
K. Kaila

1. The role of voltage-gated calcium channels in the generation of activity-induced alkaline shifts in extracellular pH (pHo) was studied in rat hippocampal slices (area CAI) by means of Ca(2+)-and H(+)-selective microlectrodes inserted into the stratum pyramidale and/or stratum radiatum. 2. After complete pharmacological blockade of ionotropic glutamate receptors and gamma-aminobutyric acid-A (GABAA) receptors, trains (5-10 Hz, 5-10s) of antidromic spikes in pyramidal neurons were associated with a fast alkaline transient of up to 0.17 pH units and a fall in the extracellular Ca2+ concentration ([Ca2+]o). The alkaline shift was strongly enhanced upon inhibition of extracellular carbonic anhydrase. 3. Application of 100 microM Ni2+ plus 100 microM Cd2+ inhibited both the fall in [Ca2+]o and the alkaline transient triggered by antidromic spikes. The alkaline shift was abolished in the absence of extracellular Ca2+. 4. In the absence of postsynaptic receptor antagonists, alkaline transients linked to a given level of synaptic excitation in s. radiatum were strongly suppressed after blockade of somatic (and, consequently, of dendritic “backpropagating”) spikes by microdrop application of tetrodotoxin to the cell-body layer. 5. We have previously shown that activity-induced alkaline transients in the CAI region are due to an influx of Ca2+ into neurons, which triggers an influx of H+ ions probably caused by activation of a plasmalemmal Ca2+/H+ ATPase. The present results indicate that much (in s. pyramidale perhaps all) of the pH-changing influx of Ca2+ is mediated by voltage-gated Ca2+ channels.


1995 ◽  
Vol 73 (1) ◽  
pp. 246-255 ◽  
Author(s):  
J. L. Gaiarsa ◽  
V. Tseeb ◽  
Y. Ben-Ari

1. Intracellular recordings were made from adult and neonatal rat hippocampal slices to study the postnatal development of GABAB-mediated inhibition in CA3 pyramidal neurons. 2. In the presence of glutamatergic receptor antagonists, direct electrical stimulation of the interneurons induced a biphasic GABAA- and GABAB-mediated inhibitory postsynaptic potential in adult [postnatal day (P) 30-P40] and young (P6-P8) CA3 pyramidal neurons. In contrast, in pups (P0-P3), electrical stimulation only induced a bicuculline-sensitive depolarizing GABAA synaptic potential. 3. The outward postsynaptic currents generated by bath-applications of baclofen (30 microM, 30 s) at P3 (78 +/- 60 pA, mean +/- SE) were 4 to 5 times smaller than those evoked between P6 (329 +/- 32 pA) and P30 (412 +/- 44 pA). At P0, baclofen failed to induce a postsynaptic current. 4. The outward currents generated by serotonin (50 microM, 30 s) and the A1 receptor agonist N-cyclopentyladenosine (40 microM, 30 s) ranged between 0 and 50 pA at P3 and between 200 and 400 pA at P6 and P30 (holding potential = -60 +/- 2 mV). 5. In the presence of potassium channel blockers, the amplitude of calcium current elicited by a depolarizing voltage step command (1 s) from a holding potential of -60 mV to a test potential of 0 mV was 2 +/- 0.15 nA at P6 (n = 9) and 0.73 +/- 0.14 nA at P3 (n = 8). Baclofen reversibly reduced the amplitude of calcium currents in young rats but not in pups. 6. Baclofen reversibly reduced the amplitude of the evoked GABAA-mediated and glutamatergic synaptic events at all developmental stages. These effects were dose dependent and antagonized by P-alpha 3-aminopropyl-P-diethoxymethyl-phosphinic acid (CGP) 35348 (500 microM). 7. We conclude that postsynaptic GABAB-mediated inhibition is absent or minimal during the first postnatal days in the CA3 region. In contrast, presynaptic GABAB inhibition is present at birth. We discuss the mechanisms and physiological consequences of these observations.


Neuroscience ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 469-477 ◽  
Author(s):  
N Berretta ◽  
A.V Rossokhin ◽  
E Cherubini ◽  
A.V Astrelin ◽  
L.L Voronin

1998 ◽  
Vol 79 (3) ◽  
pp. 1341-1348 ◽  
Author(s):  
Olivier Caillard ◽  
Heather A. McLean ◽  
Yehezkel Ben-Ari ◽  
Jean-Luc Gaïarsa

Caillard, Olivier, Heather A. McLean, Yehezkel Ben-Ari, and Jean-Luc Gaı̈arsa. Ontogenesis of presynaptic GABAB receptor-mediated inhibition in the CA3 region of the rat hippocampus. J. Neurophysiol. 79: 1341–1348, 1998. γ-Aminobutyric acid-B(GABAB) receptor-dependent and -independent components of paired-pulse depression (PPD) were investigated in the rat CA3 hippocampal region. Intracellular and whole cell recordings of CA3 pyramidal neurons were performed on hippocampal slices obtained from neonatal (5–7 day old) and adult (27–34 day old) rats. Electrical stimulation in the hilus evoked monosynaptic GABAA postsynaptic currents (eIPSCs) isolated in the presence of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM) and d(−)2-amino-5-phosphovaleric acid (d-AP5, 50 μM) with 2(triethylamino)- N-(2,6-dimethylphenyl) acetamine (QX314) filled electrodes. In adult CA3 pyramidal neurons, when a pair of identical stimuli was applied at interstimulus intervals (ISIs) ranging from 50 to 1,500 ms the amplitude of the second eIPSC was depressed when compared with the first eIPSC. This paired-pulse depression (PPD) was partially blockedb y  P - 3 - a m i n o p r o p y l - P - d i e t h o x y m e t h y l  p h o s p h o r i c  a c i d(CGP35348, 0.5 mM), a selective GABAB receptor antagonist. In neonates, PPD was restricted to ISIs shorter than 200 ms and was not affected by CGP35348. The GABAB receptor agonist baclofen reduced the amplitude of eIPSCs in a dose-dependent manner with the same efficiency in both adults and neonates. Increasing the probability of transmitter release with high Ca2+ (4 mM)/low Mg2+ (0.3 mM) external solution revealed PPD in neonatal CA3 pyramidal neurons that was 1) partially prevented by CGP35348, 2) independent of the membrane holding potential of the recorded cell, and 3) not resulting from a change in the reversal potential of GABAA eIPSCs. In adults the GABA uptake blocker tiagabine (20 μM) increased the duration of eIPSCs and the magnitude of GABAB receptor-dependent PPD. In neonates, tiagabine also increased duration of eIPSCs but to a lesser extent than in adult and did not reveal a GABAB receptor-dependent PPD. These results demonstrate that although GABAB receptor-dependent and -independent mechanisms of presynaptic inhibition are present onGABAergic terminals and functional, they do not operate at the level of monosynaptic GABAergic synaptic transmission at early stages of development. Absence of presynaptic autoinhibition of GABA release seems to be due to the small amount of transmitter that can access presynaptic regulatory sites.


1993 ◽  
Vol 69 (2) ◽  
pp. 494-503 ◽  
Author(s):  
V. Crepel ◽  
C. Rovira ◽  
Y. Ben-Ari

1. The effect of diazoxide, an opener of ATP-sensitive K+ channels (KATP channels) has been investigated in the rat hippocampal slices by the use of extracellular and intracellular recording techniques. 2. In control solution, diazoxide enhanced the CA1 and CA3 field excitatory postsynaptic potentials (EPSPs) and produced interictal activities in CA3. These effects were neither prevented by KATP blockers, including glibenclamide (3-30 microM) or tolbutamide (500 microM), nor mimicked by another KATP opener such as galanine (1 microM); thus these effects are probably not mediated by KATP channels. 3. Using intracellular recording, we then studied, in CA3 pyramidal neurons, the effect of diazoxide on the EPSPs and the fast and slow inhibitory postsynaptic potentials (IPSPs). 4. In presence of bicuculline (10 microM) and phaclofen (50 microM), to block, respectively, fast and slow IPSPs, diazoxide reversibly enhanced the EPSPs. 5. In presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM), to block EPSPs, diazoxide reversibly decreased both fast and slow IPSPs. 6. These effects of diazoxide on the EPSPs and fast and slow IPSPs were associated neither with a change of the reversal potential of the EPSPs or the fast and slow IPSPs nor with a change of the input resistance and membrane potential. 7. Using single electrode voltage-clamp technique, we then tested the effects of diazoxide on the currents generated by applications of glutamate or gamma-aminobutyric acid (GABA) -A and -B analogues. 8. In presence of tetrodotoxin (TTX; 1 microM), diazoxide reversibly enhanced the peak currents evoked by alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionate (AMPA; 3-5 microM), quisqualate (5-10 microM) and N-methyl-D-aspartate (NMDA; 10 microM), but not those evoked by kainate (1-3 microM). 9. In presence of TTX (1 microM), diazoxide reversibly decreased the GABA- (1-5 mM), isoguvacine- (30-60 microM), and baclofen- (10-30 microM) mediated peak currents. 10. It is concluded that, in the hippocampus, diazoxide enhances the excitatory glutamatergic currents and reduces the GABAergic inhibition, thus generating paroxystic activities. We suggest that these effects are mediated by second messenger cascades.


1993 ◽  
Vol 70 (3) ◽  
pp. 1018-1029 ◽  
Author(s):  
M. Avoli ◽  
C. Psarropoulou ◽  
V. Tancredi ◽  
Y. Fueta

1. Extracellular field potential and intracellular recordings were made in the CA3 subfield of hippocampal slices obtained from 10- to 24-day-old rats during perfusion with artificial cerebrospinal fluid (ACSF) containing the convulsant 4-aminopyridine (4-AP, 50 microM). 2. Three types of spontaneous, synchronous activity were recorded in the presence of 4-AP by employing extracellular microelectrodes positioned in the CA3 stratum (s.) radiatum: first, inter-ictal-like discharges that lasted 0.2-1.2 s and had an occurrence rate of 0.3-1.3 Hz; second, ictal-like events (duration: 3-40 s) that occurred at 4-38 x 10(-3) Hz; and third, large-amplitude (up to 8 mV) negative-going potentials that preceded the onset of the ictal-like events and thus appeared to initiate them. 3. None of these synchronous activities was consistently modified by addition of antagonists of the N-methyl-D-aspartate (NMDA) receptor to the ACSF. In contrast, the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 2-10 microM) reversibly blocked interictal- and ictallike discharges. The only synchronous, spontaneous activity recorded in this type of medium consisted of the negative-going potentials that were abolished by the GABAA receptor antagonists bicuculline methiodide (5-20 microM) or picrotoxin (50 microM). Hence they were mediated through the activation of the GABAA receptor. 4. Profile analysis of the 4-AP-induced synchronous activity revealed that the gamma-aminobutyric acid (GABA)-mediated field potential had maximal negative amplitude in s. lacunosum-moleculare, attained equipotentiality at the border between s. radiatum and s. pyramidale, and became positive-going in s. oriens. These findings indicated that the GABA-mediated field potential presumably represented a depolarization occurring in the dendrites of CA3 pyramidal cells. 5. This conclusion was supported by intracellular analysis of the 4-AP-induced activity. The GABA-mediated potential was reflected by a depolarization of the membrane of CA3 pyramidal cells that triggered a few variable-amplitude, fractionated spikes or fast action potentials. By contrast, the ictal-like discharge was associated with a prolonged depolarization during which repetitive bursts of action potentials occurred. Short-lasting depolarizations with bursts of action potentials occurred during each interictal-like discharge. 6. The GABA-mediated potential recorded intracellularly in the presence of CNQX consisted of a prolonged depolarization (up to 12 s) that was still capable of triggering a few fast action potentials and/or fractionated spikes.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 76 (3) ◽  
pp. 1491-1502 ◽  
Author(s):  
J. D. Angstadt ◽  
J. J. Choo

1. Individual leech Retzius (Rz) cells were removed from mid-body ganglia and plated in cell culture on concanavalin A or polylysine. Experiments on the majority of cells were performed after 6-11 days in culture. Isolated Rz cells were superfused with normal leech saline (NS), cobalt saline (Ca2+ replaced with Co2+), or one of a variety of other modified salines. 2. Prolonged plateau potentials (PPs) with durations ranging from several seconds to nearly 2 min were evoked in isolated Rz cells in response to 1-s depolarizing current pulses delivered under discontinuous current clamp. Some PPs terminated spontaneously while others were terminated with hyperpolarizing current pulses. PPs were associated with a dramatic increase in the input conductance of the neuron. The PP decayed slightly over time, and this decay was accompanied by a small decrease in the input conductance. 3. PP duration was enhanced by penetrating cells with electrodes containing tetraethylammonium (TEA) and by bathing cells in Co2+ saline, but PPs were evoked also in NS and using electrodes without TEA. The effects of TEA and Co2+ saline suggest that voltage-dependent and especially calcium-dependent outward currents normally suppress plateau formation. 4. PPs occurred most reliably in neurons with extensive neurite sprouting. Isolated somata with few or no neurites usually failed to express PP, although there were several exceptions to this trend. 5. PPs persisted when Ca2+ was replaced with either of the calcium channel blockers Co2+, Ni2+, or Mn2+, when 200 microM Cd2+ was added to normal saline, or when Na+ was replaced with Li+. In contrast, PPs were eliminated rapidly when Na+ was replaced with N-methyl-D-glucamine. 6. Isolated Rz cells also expressed repetitive PPs either spontaneously or in response to injection of sustained depolarizing current. Spontaneous repetitive PPs were suppressed by hyperpolarizing current. Repetitive PPs in isolated Rz cells are similar in many respects to the bursting electrical activity induced by Co2+ saline in Rz and other neurons in intact ganglia. 7. The ionic dependence and prolonged duration of PPs suggest that these responses are generated by a persistent voltage-dependent Na+ current. A quantitative computer simulation of PPs was achieved using a depolarization-activated Na+ conductance with very slow inactivation. Repetitive PPs were simulated by addition of a slow outward current in the form of an electrogenic pump.


1989 ◽  
Vol 61 (5) ◽  
pp. 971-981 ◽  
Author(s):  
D. A. Coulter ◽  
J. J. Lo Turco ◽  
M. Kubota ◽  
J. F. Disterhoft ◽  
J. W. Moore ◽  
...  

1. The afterhyperpolarization (AHP) that follows action potentials was studied in CA1 hippocampal pyramidal cells from classically conditioned and control rabbits. Measurements of the AHP were obtained with intracellular recordings from CA1 cells within hippocampal slices. 2. The AHP of rabbit CA1 pyramidal cells was found to be accompanied by a conductance increase. The AHP was reduced by bath applications of the calcium channel blockers, cadmium and cobalt, by bath application of the cholinergic agonist, carbamylcholine chloride, and intracellular injection of the calcium chelator, ethylene glycol-bis(B-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). 3. The AHP was markedly reduced in cells from rabbits that were well-trained with the nictitating membrane conditioning procedure, as compared with cells from pseudoconditioned or naive control animals. The difference in AHP amplitudes between conditioned and control groups increased as the number of spikes elicited by the stimulation pulse increased from one to four. Both the duration (measured as the time constant of AHP decay) and amplitude of the AHP were reduced in cells from conditioned animals. 4. The reduced AHP in cells from conditioned animals remained reduced in a medium that contained 0.5 microM tetrodotoxin (TTX) and 5.0 mM tetraethylammonium chloride (TEA); the AHP following calcium spikes was measured under these conditions. Since this medium eliminated synaptic transmission elicited by Schaeffer collateral stimulation, the AHP reduction in pyramidal cells from conditioned animals was not due to a modification in synaptic properties. There were no significant differences in the mean voltage thresholds, amplitudes, or durations of calcium spikes between cells from animals in the three groups. Thus the AHP reduction appears to be due to a modification of a Ca2+ -dependent K+ conductance and was not due to a secondary effect of reductions in calcium conductances underlying the spike. 5. In medium containing TTX and TEA, the amount of injected current required to elicit a calcium spike (current threshold) was significantly greater in cells from conditioned animals than in cells from control animals. This increase in current threshold persisted in 4-aminopyridine (4-AP)-containing medium and so cannot be attributed entirely to conditioning-specific increases in the A-current. 6. The conditioning-specific AHP reduction resulted in increased excitability in cells from conditioned animals versus pseudoconditioned control animals. Cells from conditioned animals fired more spikes to trains of 100-ms depolarizing current pulses than did cells from controls.


2001 ◽  
Vol 94 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Koichi Nishikawa ◽  
M. Bruce MacIver

Background A relatively small number of inhibitory interneurons can control the excitability and synchronization of large numbers of pyramidal cells in hippocampus and other cortical regions. Thus, anesthetic modulation of interneurons could play an important role for the maintenance of anesthesia. The aim of this study was to compare effects produced by volatile anesthetics on inhibitory postsynaptic currents (IPSCs) of rat hippocampal interneurons. Methods Pharmacologically isolated gamma-aminobutyric acid type A (GABAA) receptor-mediated IPSCs were recorded with whole cell patch-clamp techniques in visually identified interneurons of rat hippocampal slices. Neurons located in the stratum radiatum-lacunosum moleculare of the CA1 region were studied. The effects of clinically relevant concentrations (1.0 rat minimum alveolar concentration) of halothane, enflurane, isoflurane, and sevoflurane were compared on kinetics of both stimulus-evoked and spontaneous GABAA receptor-mediated IPSCs in interneurons. Results Halothane (1.2 vol% approximately 0.35 mm), enflurane (2.2 vol% approximately 0.60 mm), isoflurane (1.4 vol% approximately 0.50 mm), and sevoflurane (2.7 vol% approximately 0.40 mm) preferentially depressed evoked IPSC amplitudes to 79.8 +/- 9.3% of control (n = 5), 38.2 +/- 8.6% (n = 6), 52.4 +/- 8.4% (n = 5), and 46.1 +/- 16.0% (n = 8), respectively. In addition, all anesthetics differentially prolonged the decay time constant of evoked IPSCs to 290.1 +/- 33.2% of control, 423.6 +/- 47.1, 277.0 +/- 32.2, and 529 +/- 48.5%, respectively. The frequencies of spontaneous IPSCs were increased by all anesthetics (twofold to threefold). Thus, the total negative charge transfer mediated by GABAA receptors between synaptically connected interneurons was enhanced by all anesthetics. Conclusions Volatile anesthetics differentially enhanced GABAA receptor-mediated synaptic inhibition in rat hippocampal interneurons, suggesting that hippocampal interneuron circuits are depressed by these anesthetics in an agent-specific manner.


Sign in / Sign up

Export Citation Format

Share Document