Neurons in monkey parietal area LIP are tuned for eye-movement parameters in three-dimensional space

1995 ◽  
Vol 73 (1) ◽  
pp. 280-297 ◽  
Author(s):  
J. W. Gnadt ◽  
L. E. Mays

1. A functional class of neurons in area LIP on the lateral bank of the intraparietal sulcus were shown previously (Gnadt and Andersen 1988) to be related to the metrics of saccadic eye movements. In this study, we tested LIP neurons at different depths with respect to the plane of fixation. 2. Sixty-one neurons were identified for their increased activity before saccadic eye movements. While holding the location of the target constant at the center of the frontoparallel (saccadic) response field, the neurons were tested systematically during eye movements to target positions proximal (near) to the plane of fixation, at the plane of fixation, and distal (far) to the plane of fixation. By necessity, the movements of these targets required a combination of saccadic and vergence movements. 3. Seventy-two percent of the neurons were found to change their activity as a function of target depth relative to the plane of fixation. The neurons had broad tuning curves for depth. Some cells preferred "near" target positions, some preferred "far" positions, and others responded best in the frontoparallel plane of fixation. 4. The location of a neuron's response field in the frontoparallel plane remained constant regardless of target depth. However, the magnitude of the neuron's response increased when the target was positioned at the preferred depth and it decreased for targets positioned at nonpreferred depths. This indicated that the neurons always were related to the same frontoparallel coordinates, but responded more vigorously when the target was positioned at its preferred depth. 5. The visual display apparatus allowed independent presentation of two stimulus cues for depth: binocular disparity and accommodative demand whereas other cues were held constant. For many neurons, either cue was sufficient to tune the activity in depth, though most neurons responded best for the geometrically appropriate combination of the two cues. 6. Comparison of the binocular tuning for depth with the individual monocular responses showed that the tuning for depth was not produced by simple linear combination of two monocular response fields. 7. We tested a subset of the neurons in a double-movement task that dissociated the retinal coordinates of the visual stimuli from the eye-movement coordinates of the second movement. These tests confirmed earlier findings that this functional class of neurons are active when the eye-movement coordinates matched the neurons' response field. It was not necessary for a visual stimulus to fall within the neurons' response field for them to become active.(ABSTRACT TRUNCATED AT 400 WORDS)

2008 ◽  
Vol 99 (5) ◽  
pp. 2602-2616 ◽  
Author(s):  
Marion R. Van Horn ◽  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in “vergence centers.” We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.


Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Chong-Bin Tsai ◽  
Wei-Yu Hung ◽  
Wei-Yen Hsu

Optokinetic nystagmus (OKN) is an involuntary eye movement induced by motion of a large proportion of the visual field. It consists of a “slow phase (SP)” with eye movements in the same direction as the movement of the pattern and a “fast phase (FP)” with saccadic eye movements in the opposite direction. Study of OKN can reveal valuable information in ophthalmology, neurology and psychology. However, the current commercially available high-resolution and research-grade eye tracker is usually expensive. Methods & Results: We developed a novel fast and effective system combined with a low-cost eye tracking device to accurately quantitatively measure OKN eye movement. Conclusions: The experimental results indicate that the proposed method achieves fast and promising results in comparisons with several traditional approaches.


2000 ◽  
Vol 83 (1) ◽  
pp. 625-629 ◽  
Author(s):  
Stefano Ferraina ◽  
Martin Paré ◽  
Robert H. Wurtz

Information about depth is necessary to generate saccades to visual stimuli located in three-dimensional space. To determine whether monkey frontal eye field (FEF) neurons play a role in the visuo-motor processes underlying this behavior, we studied their visual responses to stimuli at different disparities. Disparity sensitivity was tested from 3° of crossed disparity (near) to 3° degrees of uncrossed disparity (far). The responses of about two thirds of FEF visual and visuo-movement neurons were sensitive to disparity and showed a broad tuning in depth for near or far disparities. Early phasic and late tonic visual responses often displayed different disparity sensitivity. These findings provide evidence of depth-related signals in FEF and suggest a role for FEF in the control of disconjugate as well as conjugate eye movements.


2017 ◽  
Vol 50 (5) ◽  
pp. 772-786 ◽  
Author(s):  
C-S Lee ◽  
J-H Lee ◽  
H Pak ◽  
SW Park ◽  
D-W Song

This paper evaluates the detectability of the phantom array and stroboscopic effects during light source motion, eye movement and their combination, using time modulated light-emitting diode light sources. It is well known that the phantom array can be observed when time-modulated light sources are observed during saccadic eye movements. We investigated whether light source motion can cause similar effects when the subject has fixed eyes. In addition, we estimated the detectability threshold frequency for the combination of stroboscopic effect and the phantom array, which is named the stroboscopic-phantom array effect, during two eye movements in opposite directions under one directional rotating light source with variable speed. Our results indicate that one of the most important factors for the stroboscopic-phantom array effect is eye movement speed relative to the speed of the light source. Therefore, time-modulated moving light sources induce a stroboscopic effect in subjects with fixed eyes that is similar to the stroboscopic-phantom array effect observed during saccadic eye movement. Our findings are likely to be useful for predicting the stroboscopic effect and the stroboscopic-phantom array effect during the fast motion of time-modulated LED light sources, like multi-functional rear lamps, in automotive lighting applications.


1993 ◽  
Vol 46 (1) ◽  
pp. 51-82 ◽  
Author(s):  
Harold Pashler ◽  
Mark Carrier ◽  
James Hoffman

Four dual-task experiments required a speeded manual choice response to a tone in a close temporal proximity to a saccadic eye movement task. In Experiment 1, subjects made a saccade towards a single transient; in Experiment 2, a red and a green colour patch were presented to left and right, and the saccade was to which ever patch was the pre-specified target colour. There was some slowing of the eye movement, but neither task combination showed typical dual-task interference (the “psychological refractory effect”). However, more interference was observed when the direction of the saccade depended on whether a central colour patch was red or green, or when the saccade was directed towards the numerically higher of two large digits presented to the left and the right. Experiment 5 examined a vocal second task, for comparison. The findings might reflect the fact that eye movements can be directed by two separate brain systems–-the superior colliculus and the frontal eye fields; commands from the latter but not the former may be delayed by simultaneous unrelated sensorimotor tasks.


1983 ◽  
Vol 27 (8) ◽  
pp. 728-732 ◽  
Author(s):  
Ted Megaw ◽  
Tayyar Sen

It has been suggested by Bahill and Stark (1975) that visual fatigue can be identified by changes in some of the saccadic eye movement parameters. These include increases in the frequency of occurrence of glissades and overlapping saccades and reductions in the peak velocity and duration of saccades. In their study, fatigue was induced by the same step tracking task that was used to evaluate the changes in saccadic parameters. However, there is evidence that subjects experience extreme feelings of fatigue while performing such a task and that somehow the task is unnatural. The present study was designed to assess whether there are any differences in the various saccadic parameters obtained while subjects perform a step tracking task and a cognitive task involving the comparison of number strings. Both tasks were presented on a VDU screen. The second objective was to establish whether there are any changes in the parameters for either task as a result of prolonged performance. The results showed no major differences in the saccadic eye movements between the two tasks and no consistent changes resulting from prolonged performance.


2018 ◽  
Vol 28 (9) ◽  
pp. R545-R546
Author(s):  
A.T.T. Nguyen ◽  
C.J. Palmer ◽  
C.W.G. Clifford

Sign in / Sign up

Export Citation Format

Share Document