Giant, TTX-insensitive, inhibitory postsynaptic currents in cultured rat spinal cord and medullary neurons

1996 ◽  
Vol 76 (5) ◽  
pp. 3341-3350 ◽  
Author(s):  
C. A. Lewis ◽  
D. S. Faber

1. In whole cell patch-clamp studies on cultured rat embryonic spinal cord and medullary neurons bathed in tetrodotoxin, DL-2-amino-5-phosphonovaleric acid, and 6-cyano-7-nitroquinoxaline-2,3-dione, large and long-lasting spontaneous inhibitory postsynaptic currents were occasionally recorded. The amplitudes of these events were 1 order of magnitude larger than those of spontaneous miniature inhibitory postsynaptic currents. Because these large currents had reduced amplitudes in calcium-free saline and in solutions containing glycinergic or GABAergic antagonists, we conclude that they were probably produced by large and prolonged release of glycine and/or 4-amino-n-butyric acid (GABA), which subsequently bind to their postsynaptic receptors. 2. The frequency of spontaneous miniature postsynaptic currents increased dramatically during the long, slow decay phase of these large postsynaptic currents. Considering the requirement for extracellular calcium for the occurrence of these large responses, we hypothesize that this increased frequency reflected an increased intracellular calcium concentration in the presynaptic terminal. 3. Similar evidence for large inhibitory postsynaptic currents and prolonged transmitter release was observed in cell-attached patches, which also exhibited the smaller, spontaneous miniature inhibitory postsynaptic currents, suggesting that these large events are properties of single synaptic terminals. 4. A comparison of the properties of these large inhibitory postsynaptic currents recorded in whole cell mode or cell-attached patches showed no statistically significant differences. The overall mean values, then, are 13.9 +/- 1.6 (SE) ms and 4.5 +/- 0.5 s for the 10-90% rise time and duration, respectively. Furthermore, these large events had amplitudes that were 11-fold larger than the mean amplitude of the miniatures (i.e., mean amplitude ratio of 10.8 +/- 0.5). 5. Periodic large increases in the frequency of spontaneous miniature inhibitory postsynaptic currents occurred in both cell-attached patches and in the whole cell mode, and these increases were only sometimes associated with the large inhibitory postsynaptic currents. The rhythmicity in both recording configurations had similar temporal characteristics, with average interburst intervals of 5 and 12–14 s. Presumably these bursts of spontaneous miniature postsynaptic currents reflected periodic oscillations in the Ca2+ concentration in presynaptic terminals. 6. Both the probability and the frequency of occurrence of large inhibitory postsynaptic currents doubled during the 7-day period of time in culture when experiments were performed, suggesting that these large currents may play a role during development.

2004 ◽  
Vol 92 (2) ◽  
pp. 873-882 ◽  
Author(s):  
Ning Kang ◽  
Li Jiang ◽  
Wei He ◽  
Jun Xu ◽  
Maiken Nedergaard ◽  
...  

Kainate-type glutamate ionotropic receptors (KAR) mediate either depression or potentiation of inhibitory transmission. The mechanisms underlying the depressant effect of KAR agonists have been controversial. Under dual patch-clamp recording techniques in synaptically coupled pairs of CA1 interneurons and pyramidal neurons in hippocampal slices, micromolar concentrations of KAR agonists, kainic acid (KA, 10 μM) and ATPA (10 μM), induced inactivation of action potentials (APs) in 58 and 50% of presynaptic interneurons, respectively. Inactivation of interneuronal APs might have significantly contributed to KA-induced decreases in evoked inhibitory postsynaptic currents (eIPSCs) that are obtained by stimulating the stratum radiatum. With controlled interneuronal APs, KAR agonists induced a decrease in the potency (mean amplitude of successful events) and mean amplitude (including failures) of unitary inhibitory postsynaptic currents (uIPSCs) without significantly changing the success rate (Ps) at perisomatic high-Ps synapses. In contrast, KAR agonists induced a decrease in both the Ps and potency of uIPSCs at dendritic high-Ps synapses. KAR agonists induced an inhibition of GABAA currents by activating postsynaptic KARs in pyramidal neurons; this was more prominent at dendrites than at soma. Both the exogenous GABA-induced current and the amplitude of miniature IPSCs (mIPSCs) were attenuated by KAR agonists. Thus the postsynaptic KAR-mediated inhibition of GABAA currents may contribute to the KAR agonist-induced decrease in the potency of uIPSCs and KA-induced disinhibition.


1995 ◽  
Vol 73 (5) ◽  
pp. 1763-1773 ◽  
Author(s):  
I. Soltesz ◽  
I. Mody

1. The effects of cutting off the bulk (> 2/3) of the dendritic tree (dendrotomy) on GABAergic miniature inhibitory postsynaptic currents (mIPCSs) were studied in granule cells of the adult rat dentate gyrus in 400-microns-thick slices in vitro. 2. After dendrotomy carried out in warm (32 degrees C) control artificial cerebrospinal fluid (ACSF), only small antidromic population spikes could be evoked in the granule cell layer, and no viable whole cell recordings could be obtained. However, when dendrotomy was performed in cold (8-10 degrees C) control ACSF, the amplitude of the antidromic population spikes increased, and stable whole cell recordings became possible. 3. Whole cell recordings, with CsCl-filled pipettes, from granule cells dendrotomized in cold control ACSF, revealed significant alterations, lasting > 10 h, in the decay kinetics of mIPSACs. The change consisted of a calcium-dependent transformation of the normal, single exponential decay into a prolonged double exponential that effectively increased the charge transferred by the synaptic events (the total area of the currents) by 67%. When 30 mM 1,2 bis-(2-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) was included in the pipette, the changes in the mIPSCs decay kinetics could still be observed after dendrotomy, indicating that the maintenance phase of this plasticity did not depend on elevated intracellular calcium levels. 4. Viable whole cell recordings could also be obtained in dendrotomized granule cells when the amputation of dendrites was carried out at 32 degrees C after incubation for 2 h with the cell-permeant Ca2+ chelator, BAPTA-AM (50 microM), or the cutting process was done in an ACSF containing either a combination of excitatory amino acid receptor antagonists 2-amino-5-phosphonovaleric acid (APV; 25 microM) + 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM), a blocker of intracellular Ca2+ release dantrolene-Na (20 microM), or the voltage-gated Na+ channel blocker tetrodotoxin (TTX; 1 microM). 5. After dendrotomy in BAPTA-AM, APV + CNQX, APV + CNQX + TTX, and/or dantrolene, the changes in decay kinetics were prevented, indicating that a rise in intracellular Ca2+ concentration plays a pivotal role in this plasticity. 6. Computer simulations of mIPSCs suggested that changes in single channel kinetics alone can, in principle, account for the Ca(2+)-dependent changes in mIPSC decay kinetics. 7. These findings are consistent with a lasting Ca(2+)-dependent increase in gamma-aminobutyric acid-A (GABAA) receptor function in cells that survive physical injury to their dendrites.


2000 ◽  
Vol 92 (2) ◽  
pp. 485-485 ◽  
Author(s):  
Hiroshi Baba ◽  
Peter A. Goldstein ◽  
Manabu Okamoto ◽  
Tatsuro Kohno ◽  
Toyofumi Ataka ◽  
...  

Background It has been reported previously that norepinephrine, when applied to the spinal cord dorsal horn, excites a subpopulation of dorsal horn neurons, presumably inhibitory interneurons. In the current study, the authors tested whether norepinephrine could activate inhibitory interneurons, specifically those that are "GABAergic." Methods A transverse slice was obtained from a segment of the lumbar spinal cord isolated from adult male Sprague-Dawley rats. Whole-cell patch-clamp recordings were made from substantia gelatinosa neurons using the blind patch-clamp technique. The effects of norepinephrine on spontaneous GABAergic inhibitory postsynaptic currents were studied. Results In the majority of substantia gelatinosa neurons tested, norepinephrine (10-60 microM) significantly increased both the frequency and the amplitude of GABAergic inhibitory postsynaptic currents. These increases were blocked by tetrodotoxin (1 microM). The effects of norepinephrine were mimicked by the alpha1-receptor agonist phenylephrine (10-80 microM) and inhibited by the alpha1-receptor-antagonist WB-4101 (0.5 microM). Primary-afferent-evoked polysynaptic excitatory postsynaptic potentials or excitatory postsynaptic currents in wide-dynamic-range neurons of the deep dorsal horn were also attenuated by phenylephrine (40 microM). Conclusion The observations suggest that GABAergic interneurons possess somatodendritic alpha1 receptors, and activation of these receptors excites inhibitory interneurons. The alpha1 actions reported herein may contribute to the analgesic action of intrathecally administered phenylephrine.


2000 ◽  
Vol 92 (2) ◽  
pp. 473-473 ◽  
Author(s):  
Hiroshi Baba ◽  
Koki Shimoji ◽  
Megumu Yoshimura

Background The activation of descending norepinephrine-containing fibers from the brain stem inhibits nociceptive transmission at the spinal level. How these descending noradrenergic pathways exert the analgesic effect is not understood fully. Membrane hyperpolarization of substantia gelatinosa (Rexed lamina II) neurons by the activation of alpha2 receptors may account for depression of pain transmission. In addition, it is possible that norepinephrine affects transmitter release in the substantia gelatinosa. Methods Adult male Sprague-Dawley rats (9-10 weeks of age, 250-300 g) were used in this study. Transverse spinal cord slices were cut from the isolated lumbar cord. The blind whole-cell patch-clamp technique was used to record from neurons. The effects of norepinephrine on the frequency and amplitude of miniature excitatory and inhibitory postsynaptic currents were evaluated. Results In the majority of substantia gelatinosa neurons tested, norepinephrine (10-100 microM) dose-dependently increased the frequency of gamma-aminobutyric acid (GABA)ergic and glycinergic miniature inhibitory postsynaptic currents; miniature excitatory postsynaptic currents were unaffected. This augmentation was mimicked by an alpha1-receptor agonist, phenylephrine (10-60 microM), and inhibited by alpha1-receptor antagonists prazosin (0.5 microM) and 2-(2,6-dimethoxyphenoxyethyl) amino-methyl-1,4-benzodioxane (0.5 microM). Neither postsynaptic responsiveness to exogenously applied GABA and glycine nor the kinetics of GABAergic and glycinergic inhibitory postsynaptic currents were affected by norepinephrine. Conclusion These results suggest that norepinephrine enhances inhibitory synaptic transmission in the substantia gelatinosa through activation of presynaptic alpha1 receptors, thus providing a mechanism underlying the clinical use of alpha1 agonists with local anesthetics in spinal anesthesia.


1996 ◽  
Vol 76 (1) ◽  
pp. 461-470 ◽  
Author(s):  
C. A. Lewis ◽  
D. S. Faber

1. To quantify the variability in the characteristics of inhibitory glycinergic and GABAergic currents at single synaptic connections between cultured rat embryonic spinal cord or medullary neurons, we have used patch-clamp techniques to record miniature inhibitory postsynaptic currents (mIPSCs) in cell-attached patches. Experiments were performed with the patch pipette containing either a low-calcium internal saline to allow comparison with subsequent whole cell recordings or external saline with tetrodotoxin, DL-2-amino-5-phosphonovaleric acid, and 6-cyano-7-nitroquinoxaline-2,3-dione, a solution that is more appropriate for bathing a nerve terminal. 2. The mIPSCs recorded from the synapses restricted to the cell-attached patches were characterized by their times to peak, amplitudes, and time constants of decay. The degree of variability in these characteristics was quantified with the use of the following model-independent parameters: the coefficient of variation, skewness, and kurtosis. The distribution of time to peak values has a mean value of 5.6 +/- 0.5 (SE) ms, has the lowest coefficient of variation (0.33 +/- 0.01), is fairly symmetrical, and has a Gaussian shape with respect to peakedness. On the other hand, both the amplitude and decay time constant distributions are highly skewed and more peaked than Gaussian distributions. The mean amplitude is -6.6 +/- 0.6 pA with a coefficient of variation of 0.60 +/- 0.05, whereas the mean decay time constant is 22.8 +/- 1.0 ms with a coefficient of variation of 0.81 +/- 0.03. 3. The amplitude distributions for spontaneous inhibitory currents recorded from cell-attached patches are best fitted by the sum of multiple Gaussians. The coefficient of variation for the first Gaussian peak fitted to the amplitude distributions is 0.290 +/- 0.028. 4. Decay time distributions were consistently best fitted by the sum of four Gaussians with decay constants as follows: D1 = 5.7 +/- 0.2 ms (n = 12), D2 = 11.2 +/- 0.7 ms (n = 11), D3 = 20.6 +/- 0.8 ms (n = 12), and D4 = 43.8 +/- 2.3 ms (n = 16). These mean values are essentially identical to those reported in the preceding paper for mIPSCs recorded in the whole cell configuration. 5. In eight neurons we were able to record mIPSCs both in cell-attached patches and in subsequent whole cell configurations. The properties of mIPSCs recorded from single synapses (i.e., times to peak, amplitude, and time constants of decay) show as much variability as those of mIPSCs recorded subsequently in the whole cell mode; that is, there are no statistically significant differences in the coefficients of variation, skewness, or kurtosis for the three different distributions.


2003 ◽  
Vol 90 (3) ◽  
pp. 1589-1597 ◽  
Author(s):  
Jason Itri ◽  
Christopher S. Colwell

Circadian rhythmicity in mammals is generated by a pair of nuclei in the anterior hypothalamus known as the suprachiasmatic nuclei (SCN), whose neurons express a variety of neuropeptides that are thought to play an important role in the circadian timing system. To evaluate the influence of VIP on inhibitory synaptic transmission between SCN neurons, we used whole cell patch-clamp recording in an acute brain slice preparation of mouse SCN. Baseline spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) varied significantly between regions and across phases, with a greater frequency of IPSCs observed in the dorsomedial region during the early night. Bath-applied VIP caused a significant increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) in a reversible and dose-dependent manner with no effect on the mean amplitude or kinetic parameters. The effect of VIP was widespread throughout the SCN and observed in both ventrolateral (VL) and dorsomedial (DM) regions. In the presence of tetrodotoxin, VIP increased the frequency of miniature IPSCs without affecting the mean magnitude or kinetic parameters. The magnitude of the enhancement by VIP was significantly larger during the day than during the night. Pretreatment with the VIP-PACAP receptor antagonist [Ac-Tyr1, D-Phe2]-GHRF 1-29 or the selective VPAC2 receptor antagonist PG 99-465 completely blocked the VIP-induced enhancement. The effect of VIP appears to be mediated by a cAMP/PKA-dependent mechanism as forskolin mimics, while the PKA antagonist H-89 blocks the observed enhancement of GABA currents. Our data suggest that VIP activates presynaptic VPAC2 receptors to regulate inhibitory synaptic transmission within the SCN and that this effect varies from day to night.


Sign in / Sign up

Export Citation Format

Share Document