NREM delta stimulation following MK-801 is a response of sleep systems

1996 ◽  
Vol 76 (6) ◽  
pp. 3714-3720 ◽  
Author(s):  
I. G. Campbell ◽  
I. Feinberg

1. We have previously shown that noncompetitive blockade of the N-methyl-D-aspartate (NMDA)-gated cation channel with ketamine or Dizocilpine maleate (MK-801) increases the intensity of non-rapid-eye-movement (NREM) delta during subsequent sleep. This delta increase [measured as integrated amplitude (IA) in 1- to 4-Hz electroencephalogram (EEG)] occurs in the 12-h period following intraperitoneal injection. However, the 12 h after drug injection is also the period in which these drugs induce neurotoxic changes, raising the possibility that the increased delta represents toxic EEG slowing rather than an increase in the physiological delta waves of NREM sleep. 2. We hypothesized that the time course of delta stimulation could be separated from the time course of neurotoxicity. We tested this hypothesis by injecting 0.3 mg/kg MK-801 at the start of the dark period (DP) and depriving rats of sleep until the onset of the light period (LP) 12 h later. 3. There were two control groups: one received MK-801 at the start of the DP with no further manipulation, and the second received a saline injection at DP onset followed by 12 h of sleep deprivation. The dependent variable was the amount of delta IA in the LP, whose onset was 12 h after MK-801 injection. Total IA in the LP was significantly greater in rats that received MK-801 followed by sleep deprivation than in rats that received sleep deprivation alone or MK-801 alone. 4. This finding indicates that delta stimulation by MK-801 is maintained over 12 h of waking, indicating that the delta increase is not due to toxic EEG slowing or persisting MK-801. Instead, NMDA channel blockade by MK-801 increases the homeostatic need for delta or else directly alters sleep regulatory systems. We speculate that these effects are mediated by hypothalamic sleep centers through control of neuroendocrine pulses that produce both NREM and rapid-eye-movement sleep. 5. Imposing a period of waking between drug administration and sleep onset may prove a generally useful strategy for determining whether a drug affects the homeostatic need for sleep or acutely stimulates sleep systems. This strategy can also help distinguish between toxic and physiological increases in delta EEG.

SLEEP ◽  
2019 ◽  
Vol 43 (6) ◽  
Author(s):  
Sjoerd J van Hasselt ◽  
Maria Rusche ◽  
Alexei L Vyssotski ◽  
Simon Verhulst ◽  
Niels C Rattenborg ◽  
...  

Abstract Most of our knowledge about the regulation and function of sleep is based on studies in a restricted number of mammalian species, particularly nocturnal rodents. Hence, there is still much to learn from comparative studies in other species. Birds are interesting because they appear to share key aspects of sleep with mammals, including the presence of two different forms of sleep, i.e. non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. We examined sleep architecture and sleep homeostasis in the European starling, using miniature dataloggers for electroencephalogram (EEG) recordings. Under controlled laboratory conditions with a 12:12 h light–dark cycle, the birds displayed a pronounced daily rhythm in sleep and wakefulness with most sleep occurring during the dark phase. Sleep mainly consisted of NREM sleep. In fact, the amount of REM sleep added up to only 1~2% of total sleep time. Animals were subjected to 4 or 8 h sleep deprivation to assess sleep homeostatic responses. Sleep deprivation induced changes in subsequent NREM sleep EEG spectral qualities for several hours, with increased spectral power from 1.17 Hz up to at least 25 Hz. In contrast, power below 1.17 Hz was decreased after sleep deprivation. Sleep deprivation also resulted in a small compensatory increase in NREM sleep time the next day. Changes in EEG spectral power and sleep time were largely similar after 4 and 8 h sleep deprivation. REM sleep was not noticeably compensated after sleep deprivation. In conclusion, starlings display signs of NREM sleep homeostasis but the results do not support the notion of important REM sleep functions.


2020 ◽  
Author(s):  
Carlos Blanco-Centurion ◽  
SiWei Luo ◽  
Aurelio Vidal-Ortiz ◽  
Priyattam J. Shiromani

AbstractSleep and wake are opposing behavioral states controlled by the activity of specific neurons. The neurons responsible for sleep/wake control have not been fully identifed due to the lack of in-vivo high throughput technology. We use the deep-brain calcium (Ca2+) imaging method to identify activity of hypothalamic neurons expressing the vesicular GABA transporter (vGAT), a marker of GABAergic neurons. vGAT-cre mice (n=5) were microinjected with rAAV-FLEX-GCaMP6M into the lateral hypothalamus and 21d later the Ca2+ influx in vGAT neurons (n=372) was recorded in freely-behaving mice during waking (W), NREM and REM sleep. Post-mortem analysis revealed the lens tip located in the zona incerta/lateral hypothalamus (ZI-LH) and the change in fluorescence of neurons in the field of view was as follows: 54.9% of the vGAT neurons had peak fluorescence during REM sleep (REM-max), 17.2% were NREM-max, 22.8% were wake-max while 5.1% were both wake+REM max. Thus, three quarters of the recorded vGAT neurons in the ZI-LH were most active during sleep. In the NREM-max group Ca2+ fluorescence anticipated the initiation of NREM sleep onset and remained high throughout sleep (NREM and REM sleep). In the REM-max neurons Ca2+fluorescence increased before the onset of REM sleep and stayed elevated during the episode. Activation of the vGAT NREM-max neurons in the zona incerta and dorsal lateral hypothalamus would inhibit the arousal neurons to initiate and maintain sleep.


1993 ◽  
Vol 75 (2) ◽  
pp. 626-632 ◽  
Author(s):  
J. R. Wheatley ◽  
D. J. Tangel ◽  
W. S. Mezzanotte ◽  
D. P. White

The influence of sleep on the upper airway musculature varies considerably, with some muscles maintaining their activity at waking levels and others falling substantially. The influence of sleep on the alae nasi (AN), a dilator muscle of the nasal airway, has been minimally studied to date. Thus we determined the effect of non-rapid-eye-movement (NREM) sleep on the AN electromyogram and its relationship to nasal resistance (Rn) in nine normal supine males. Phasic inspiratory AN activity decreased from 20 +/- 6 arbitrary units during wakefulness to 5 +/- 1 arbitrary units (P < 0.001) at the onset of stage 2 NREM sleep and remained unchanged for two subsequent hours of NREM sleep. However, the Rn at the onset of NREM sleep remained similar to awake values (5.7 +/- 0.9 cmH2O.l-1 x s) and increased only after 1 h of NREM sleep (8.6 +/- 1.7 cmH2O.l-1 x s, P < 0.05), thus demonstrating little relationship to AN activity. We conclude that Rn increases slightly after 1 h of sleep, whereas AN activity decreases at stage 2 sleep onset. Thus AN activity has little influence on Rn during sleep.


2016 ◽  
Vol 3 (10) ◽  
pp. 160201 ◽  
Author(s):  
Peter Achermann ◽  
Thomas Rusterholz ◽  
Roland Dürr ◽  
Thomas König ◽  
Leila Tarokh

Sleep is characterized by a loss of consciousness, which has been attributed to a breakdown of functional connectivity between brain regions. Global field synchronization (GFS) can estimate functional connectivity of brain processes. GFS is a frequency-dependent measure of global synchronicity of multi-channel EEG data. Our aim was to explore and extend the hypothesis of disconnection during sleep by comparing GFS spectra of different vigilance states. The analysis was performed on eight healthy adult male subjects. EEG was recorded during a baseline night, a recovery night after 40 h of sustained wakefulness and at 3 h intervals during the 40 h of wakefulness. Compared to non-rapid eye movement (NREM) sleep, REM sleep showed larger GFS values in all frequencies except in the spindle and theta bands, where NREM sleep showed a peak in GFS. Sleep deprivation did not affect GFS spectra in REM and NREM sleep. Waking GFS values were lower compared with REM and NREM sleep except for the alpha band. Waking alpha GFS decreased following sleep deprivation in the eyes closed condition only. Our surprising finding of higher synchrony during REM sleep challenges the view of REM sleep as a desynchronized brain state and may provide insight into the function of REM sleep.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Kun-Ming Ni ◽  
Xiao-Jun Hou ◽  
Ci-Hang Yang ◽  
Ping Dong ◽  
Yue Li ◽  
...  

Cholinergic projections from the basal forebrain and brainstem are thought to play important roles in rapid eye movement (REM) sleep and arousal. Using transgenic mice in which channelrhdopsin-2 is selectively expressed in cholinergic neurons, we show that optical stimulation of cholinergic inputs to the thalamic reticular nucleus (TRN) activates local GABAergic neurons to promote sleep and protect non-rapid eye movement (NREM) sleep. It does not affect REM sleep. Instead, direct activation of cholinergic input to the TRN shortens the time to sleep onset and generates spindle oscillations that correlate with NREM sleep. It does so by evoking excitatory postsynaptic currents via α7-containing nicotinic acetylcholine receptors and inducing bursts of action potentials in local GABAergic neurons. These findings stand in sharp contrast to previous reports of cholinergic activity driving arousal. Our results provide new insight into the mechanisms controlling sleep.


2015 ◽  
Vol 113 (7) ◽  
pp. 2742-2752 ◽  
Author(s):  
Daniel Abásolo ◽  
Samantha Simons ◽  
Rita Morgado da Silva ◽  
Giulio Tononi ◽  
Vladyslav V. Vyazovskiy

Understanding the dynamics of brain activity manifested in the EEG, local field potentials (LFP), and neuronal spiking is essential for explaining their underlying mechanisms and physiological significance. Much has been learned about sleep regulation using conventional EEG power spectrum, coherence, and period-amplitude analyses, which focus primarily on frequency and amplitude characteristics of the signals and on their spatio-temporal synchronicity. However, little is known about the effects of ongoing brain state or preceding sleep-wake history on the nonlinear dynamics of brain activity. Recent advances in developing novel mathematical approaches for investigating temporal structure of brain activity based on such measures, as Lempel-Ziv complexity (LZC) can provide insights that go beyond those obtained with conventional techniques of signal analysis. Here, we used extensive data sets obtained in spontaneously awake and sleeping adult male laboratory rats, as well as during and after sleep deprivation, to perform a detailed analysis of cortical LFP and neuronal activity with LZC approach. We found that activated brain states—waking and rapid eye movement (REM) sleep are characterized by higher LZC compared with non-rapid eye movement (NREM) sleep. Notably, LZC values derived from the LFP were especially low during early NREM sleep after sleep deprivation and toward the middle of individual NREM sleep episodes. We conclude that LZC is an important and yet largely unexplored measure with a high potential for investigating neurophysiological mechanisms of brain activity in health and disease.


SLEEP ◽  
2021 ◽  
Author(s):  
Mahesh K Kaushik ◽  
Kosuke Aritake ◽  
Yoan Cherasse ◽  
Aya Imanishi ◽  
Takashi Kanbayashi ◽  
...  

Abstract Orexins/hypocretins are hypothalamic neuropeptides that promote and stabilize wakefulness by binding to the orexin receptor type-1 (OX1R) and type-2 (OX2R). Disruption of orexinergic signaling results in the sleep disorder narcolepsy in mice, rats, dogs, and humans. The orexin receptor antagonist suvorexant promotes sleep by blocking both OX1R and OX2R. Whereas suvorexant has been clinically approved for the treatment of insomnia because it is well tolerated in experimental animals as well as in human patients, a logical question remains as to why orexin receptor antagonists do not induce overt narcolepsy-like symptoms. Here we show that acute and chronic suvorexant promotes both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep without inducing cataplexy in mice. Interestingly, chronic suvorexant increases OX2R mRNA and decreases orexin mRNA and peptide levels, which remain low long after termination of suvorexant administration. When mice are chronically treated with suvorexant and then re-challenged with the antagonist after a 1-week washout, however, cataplexy and sleep-onset REM (SOREM) are observed, which are exacerbated by chocolate administration. Heterozygous orexin knockout mice, with lower brain orexin levels, show cataplexy and SOREM after acute suvorexant administration. Furthermore, we find that acute suvorexant can induce cataplexy and SOREM in wild-type mice when co-administered with chocolate under stress-free (temporally anesthetized) conditions. Taken together, these results suggest that suvorexant can inhibit orexin synthesis resulting in susceptibility to narcolepsy-like symptoms in mice under certain conditions.


2020 ◽  
Author(s):  
Alejandra Mondino ◽  
Viviane Hambrecht-Wiedbusch ◽  
Duan Li ◽  
A. Kane York ◽  
Dinesh Pal ◽  
...  

ABSTRACTClinical and experimental data from the last nine decades indicate that the preoptic area of the hypothalamus is a critical node in a brain network that controls sleep onset and homeostasis. By contrast, we recently reported that a group of glutamatergic neurons in the lateral and medial preoptic area increases wakefulness, challenging the long-standing notion in sleep neurobiology that the preoptic area is exclusively somnogenic. However, the precise role of these subcortical neurons in the control of behavioral state transitions and cortical dynamics remains unknown. Therefore, in this study we used conditional expression of excitatory hM3Dq receptors in these preoptic glutamatergic (Vglut2+) neurons and show that their activation initiates wakefulness, decreases non-rapid eye movement (NREM) sleep, and causes a persistent suppression of rapid eye movement (REM) sleep. Activation of preoptic glutamatergic neurons also causes a high degree of NREM sleep fragmentation, promotes state instability with frequent arousals from sleep, and shifts cortical dynamics (including oscillations, connectivity, and complexity) to a more wake-like state. We conclude that a subset of preoptic glutamatergic neurons may initiate -but not maintain- arousals from sleep, and their inactivation may be required for NREM stability and REM sleep generation. Further, these data provide novel empirical evidence supporting the conclusion that the preoptic area causally contributes to the regulation of both sleep and wakefulness.


1994 ◽  
Vol 266 (3) ◽  
pp. R688-R695 ◽  
Author(s):  
M. R. Opp ◽  
J. M. Krueger

Interleukin-1 (IL-1) is somnogenic and is hypothesized to be involved in physiological sleep regulation. Antibodies directed against rat IL-1 beta were used to further elucidate possible contributions of IL-1 to sleep regulation. Rabbit anti-rat IL-1 beta (anti-IL-1 beta) was injected intracerebroventricularly into normal rats 15 min before light onset. A 20-microgram dose of anti-IL-1 beta reduced non-rapid-eye-movement (NREM) sleep by 60 min during the subsequent 12-h slight period. There was no effect on rapid eye movement sleep after this dose of anti-IL-1 beta. The effects of anti-IL-1 beta on the enhancement of sleep after periods of sleep deprivation were also determined. When rats were deprived of sleep for 3-h beginning at light onset, the amount of time spent in NREM sleep increased for the remaining 9 h of the light period, regardless of whether control intracerebroventricular injections of pyrogen-free saline or rabbit immunoglobulin G were given during the deprivation period. However, when 20 micrograms anti-IL-1 beta were injected intracerebroventricularly during the sleep deprivation period, the expected NREM sleep rebound was completely blocked. Collectively, these data provide additional support for the hypothesis that IL-1 is involved in regulation of physiological sleep-wake activity.


1992 ◽  
Vol 72 (1) ◽  
pp. 100-109 ◽  
Author(s):  
J. B. Neilly ◽  
N. B. Kribbs ◽  
G. Maislin ◽  
A. I. Pack

To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.


Sign in / Sign up

Export Citation Format

Share Document