Eye Movement Deficits After Ibotenic Acid Lesions of the Nucleus Prepositus Hypoglossi in Monkeys. I. Saccades and Fixation

1997 ◽  
Vol 78 (4) ◽  
pp. 1753-1768 ◽  
Author(s):  
Chris R. S. Kaneko

Kaneko, Chris R. S. Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J. Neurophysiol. 78: 1753–1768, 1997. It has been suggested that the function of the nucleus prepositus hypoglossi (nph) is the mathematical integration of velocity-coded signals to produce position-coded commands that drive abducens motoneurons and generate horizontal eye movements. In early models of the saccadic system, a single integrator provided not only the signal that maintained steady gaze after a saccade but also an efference copy of eye position, which provided a feedback signal to control the dynamics of the saccade. In this study, permanent, serial ibotenic acid lesions were made in the nph of three rhesus macaques, and their effects were studied while the alert monkeys performed a visual tracking task. Localized damage to the nph was confirmed in both Nissl and immunohistochemically stained material. The lesions clearly were correlated with long-lasting deficits in eye movement. The animals' ability to fixate in the dark was compromised quickly and uniformly so that saccades to peripheral locations were followed by postsaccadic centripetal drift. The time constant of the drift decreased to approximately one-tenth of its normal values but remained 10 times longer than that attributable to the mechanics of the eye. In contrast, saccades were affected minimally. The results are more consistent with models of the neural saccade generator that use separate feedback and position integrators than with the classical models, which use a single multipurpose element. Likewise, the data contradict models that rely on feedback from the nph. In addition, they show that the oculomotor neural integrator is not a single neural entity but is most likely distributed among a number of nuclei.

1999 ◽  
Vol 81 (2) ◽  
pp. 668-681 ◽  
Author(s):  
Chris R. S. Kaneko

Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. II. Pursuit, vestibular, and optokinetic responses. The eyes are moved by a combination of neural commands that code eye velocity and eye position. The eye position signal is supposed to be derived from velocity-coded command signals by mathematical integration via a single oculomotor neural integrator. For horizontal eye movements, the neural integrator is thought to reside in the rostral nucleus prepositus hypoglossi (nph) and project directly to the abducens nuclei. In a previous study, permanent, serial ibotenic acid lesions of the nph in three rhesus macaques compromised the neural integrator for fixation but saccades were not affected. In the present study, to determine further whether the nph is the neural substrate for a single oculomotor neural integrator, the effects of those lesions on smooth pursuit, the vestibulo-ocular reflex (VOR), vestibular nystagmus (VN), and optokinetic nystagmus (OKN) are documented. The lesions were correlated with long-lasting deficits in eye movements, indicated most clearly by the animals’ inability to maintain steady gaze in the dark. However, smooth pursuit and sinusoidal VOR in the dark, like the saccades in the previous study, were affected minimally. The gain of horizontal smooth pursuit (eye movement/target movement) decreased slightly (<25%) and phase lead increased slightly for all frequencies (0.3–1.0 Hz, ±10° target tracking), most noticeably for higher frequencies (0.8–0.7 and ∼20° for 1.0-Hz tracking). Vertical smooth pursuit was not affected significantly. Surprisingly, horizontal sinusoidal VOR gain and phase also were not affected significantly. Lesions had complex effects on both VN and OKN. The plateau of per- and postrotatory VN was shortened substantially (∼50%), whereas the initial response and the time constant of decay decreased slightly. The initial OKN response also decreased slightly, and the charging phase was prolonged transiently then recovered to below normal levels like the VN time constant. Maximum steady-state, slow eye velocity of OKN decreased progressively by ∼30% over the course of the lesions. These results support the previous conclusion that the oculomotor neural integrator is not a single neural entity and that the mathematical integrative function for different oculomotor subsystems is most likely distributed among a number of nuclei. They also show that the nph apparently is not involved in integrating smooth pursuit signals and that lesions of the nph can fractionate the VOR and nystagmic responses to adequate stimuli.


2003 ◽  
Vol 90 (2) ◽  
pp. 739-754 ◽  
Author(s):  
Pierre A. Sylvestre ◽  
Julia T. L. Choi ◽  
Kathleen E. Cullen

Burst-tonic (BT) neurons in the prepositus hypoglossi and adjacent medial vestibular nuclei are important elements of the neural integrator for horizontal eye movements. While the metrics of their discharges have been studied during conjugate saccades (where the eyes rotate with similar dynamics), their role during disjunctive saccades (where the eyes rotate with markedly different dynamics to account for differences in depths between saccadic targets) remains completely unexplored. In this report, we provide the first detailed quantification of the discharge dynamics of BT neurons during conjugate saccades, disjunctive saccades, and disjunctive fixation. We show that these neurons carry both significant eye position and eye velocity-related signals during conjugate saccades as well as smaller, yet important, “slide” and eye acceleration terms. Further, we demonstrate that a majority of BT neurons, during disjunctive fixation and disjunctive saccades, preferentially encode the position and the velocity of a single eye; only few BT neurons equally encode the movements of both eyes (i.e., have conjugate sensitivities). We argue that BT neurons in the nucleus prepositus hypoglossi/medial vestibular nucleus play an important role in the generation of unequal eye movements during disjunctive saccades, and carry appropriate information to shape the saccadic discharges of the abducens nucleus neurons to which they project.


1987 ◽  
Vol 57 (5) ◽  
pp. 1383-1409 ◽  
Author(s):  
S. C. Cannon ◽  
D. A. Robinson

Eye movement were recorded from four juvenile rhesus monkeys (Macaca mulatta) before and after the injection of neurotoxins (kainate or ibotenate) in the region of the medial vestibular and prepositus hypoglossi nuclei, an area hypothesized to be the locus of the neural integrator for horizontal eye movement commands. Eye movements were measured in the head-restrained animal by the magnetic field/eye-coil method. The monkeys were trained to follow visual targets. A chamber implanted over a trephine hole in the skull permitted recordings to be made in the brain stem with metal microelectrodes. The abducens nuclei were located and used as a reference point for subsequent neurotoxin injections through cannulas. The effects of these lesions on fixation, vestibuloocular and optokinetic responses, and smooth pursuit were compared with predicted oculomotor anomalies caused by a loss of the neural integrator. Kainate and ibotenate did not create permanent lesions in this region of the brain stem. All the eye movements returned toward normal over the course of a few days to 2 wk. Histological examination revealed that the cannula tips were mainly located between the vestibular and prepositus hypoglossi nuclei, in their rostral 2 mm, bordered rostrally by the abducens nuclei. Dense gliosis clearly demarcated the cannula tracks, but for most injections there were no surrounding regions of neuronal loss. Thus the eye movement disorders were due to a reversible, not a permanent, lesion. The time constant for the neural integrator was determined from the velocity of the centripetal drift of the eyes just after an eccentric saccade in total darkness. For intact animals this time constant was greater than 20 s. Shortly after bilateral injections of neurotoxin, the time constant began to decrease and reached a minimum of 200 ms; every horizontal saccade was followed by a rapid centripetal drift with a time constant of approximately 200 ms. For vertical eye movements, in this acute phase, the time constant was approximately 2.5 s. The vestibuloocular reflex (VOR) was drastically changed by the lesions. A step of constant head velocity in total darkness evoked a step change in eye position rather than in velocity. In the absence of the neural integrator, the step velocity command from the canal afferents was not integrated to produce a ramp of eye position (normal slow phases); rather this signal was relayed directly to the motoneurons and caused a step in eye position. The per- and postrotatory decay of the head velocity signal was decreased to 5-6 s indicating that vestibular velocity storage was also impaired.(ABSTRACT TRUNCATED AT 400 WORDS)


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4901
Author(s):  
Lucjan Setlak ◽  
Rafał Kowalik

Sometimes, it is impossible to conduct tests with the use of the GNSS system, or the obtained results of the measurements made differ significantly from the predicted accuracy. The most common cause of the problems (external factors, faulty results) are interference disturbances from other radio telecommunication systems. The subject of this paper is to conduct research, the essence of which is an in-depth analysis in the field of elimination of LTE interference signals of the GNSS receiver, that is based on the developed effective methods on counteracting the phenomenon of interference signals coming from this system and transmitted on the same frequency. Interference signals are signals transmitted in the GNSS operating band, and unwanted signals may cause incorrect processing of the information provided to the end-user about his position, speed, and current time. This article presents methods of identifying and detecting interference signals, with particular emphasis on methods based on spatial processing of signals transmitted by the LTE system. A comparative analysis of the methods of detecting an unwanted signal was made in terms of their effectiveness and complexity of their implementation. Moreover, the concept of a new comprehensive anti-interference solution was proposed. It includes, among others, information on the various stages of GNSS signal processing in the proposed system, in relation to the algorithms used in traditional GNSS receivers. The final part of the article presents the obtained research results and the resulting significant observations and practical conclusions.


2020 ◽  
Vol 35 (2) ◽  
Author(s):  
Bruce Whitehouse

Mali's coup d'état in March 2012 and the subsequent occupation of northern Mali by Islamist and separatist rebels took many observers by surprise. How could an erstwhile model of peaceful democratic transition collapse so swiftly? Why did so few ordinary Malians stand up in defence of their 20-year-old democracy? Combining accounts from Malian and foreign journalists with observations made in Bamako leading up to and during the dramatic events of early 2012, this article assesses the failures of Mali's pre-coup political system. A combination of the tenuous rule of law, weak state institutions, and perceptions of systemic corruption deeply eroded Malians' faith in their democracy. The junta that ousted Mali's elected president in March 2012, despite its international isolation, skillfully manipulated public frustrations with the government as well as local symbols and discourses pertaining to heroic leaders to gain support and legitimacy at home. The crisis in Mali was preceded by certain warning signs, some of which might be applied to gauge the health of democratic transitions elsewhere in Africa.


1992 ◽  
Vol 68 (1) ◽  
pp. 319-332 ◽  
Author(s):  
J. L. McFarland ◽  
A. F. Fuchs

1. Monkeys were trained to perform a variety of horizontal eye tracking tasks designed to reveal possible eye movement and vestibular sensitivities of neurons in the medulla. To test eye movement sensitivity, we required stationary monkeys to track a small spot that moved horizontally. To test vestibular sensitivity, we rotated the monkeys about a vertical axis and required them to fixate a target rotating with them to suppress the vestibuloocular reflex (VOR). 2. All of the 100 units described in our study were recorded from regions of the medulla that were prominently labeled after injections of horseradish peroxidase into the abducens nucleus. These regions include the nucleus prepositus hypoglossi (NPH), the medial vestibular nucleus (MVN), and their common border (the “marginal zone”). We report here the activities of three different types of neurons recorded in these regions. 3. Two types responded only during eye movements per se. Their firing rates increased with eye position; 86% had ipsilateral “on” directions. Almost three quarters (73%) of these medullary neurons exhibited a burst-tonic discharge pattern that is qualitatively similar to that of abducens motoneurons. There were, however, quantitative differences in that these medullary burst-position neurons were less sensitive to eye position than were abducens motoneurons and often did not pause completely for saccades in the off direction. The burst of medullary burst position neurons preceded the saccade by an average of 7.6 +/- 1.7 (SD) ms and, on average, lasted the duration of the saccade. The number of spikes in the burst was well correlated with saccade size. The second type of eye movement neuron displayed either no discernible burst or an inconsistent one for on-direction saccades and will be referred to as medullary position neurons. Neither the burst-position nor the position neurons responded when the animals suppressed the VOR; hence, they displayed no vestibular sensitivity. 4. The third type of neuron was sensitive to both eye movement and vestibular stimulation. These neurons increased their firing rates during horizontal head rotation and smooth pursuit eye movements in the same direction; most (76%) preferred ipsilateral head and eye movements. Their firing rates were approximately in phase with eye velocity during sinusoidal smooth pursuit and with head velocity during VOR suppression; on average, their eye velocity sensitivity was 50% greater than their vestibular sensitivity. Sixty percent of these eye/head velocity cells were also sensitive to eye position. 5. The NPH/MVN region contains many neurons that could provide an eye position signal to abducens neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document